Christel Faes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3295259/publications.pdf

Version: 2024-02-01

		172457	182427
141	3,584	29	51
papers	citations	h-index	g-index
158	158	158	5519
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance, 2020, 25, .	7.0	471
2	Time between Symptom Onset, Hospitalisation and Recovery or Death: Statistical Analysis of Belgian COVID-19 Patients. International Journal of Environmental Research and Public Health, 2020, 17, 7560.	2.6	189
3	European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe (1997–2009). Journal of Antimicrobial Chemotherapy, 2011, 66, vi3-vi12.	3.0	173
4	Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology, 2007, 229, 145-156.	4.2	132
5	Seventy-five years of estimating the force of infection from current status data. Epidemiology and Infection, 2010, 138, 802-812.	2.1	100
6	Modeling Infectious Disease Parameters Based on Serological and Social Contact Data. Statistics in the Health Sciences, 2012, , .	0.2	90
7	The impact of contact tracing and household bubbles on deconfinement strategies for COVID-19. Nature Communications, 2021, 12, 1524.	12.8	87
8	The impact of traffic air pollution on bronchiolitis obliterans syndrome and mortality after lung transplantation. Thorax, 2011, 66, 748-754.	5.6	85
9	European Surveillance of Antimicrobial Consumption (ESAC): outpatient quinolone use in Europe (1997–2009). Journal of Antimicrobial Chemotherapy, 2011, 66, vi47-vi56.	3.0	81
10	The Effective Sample Size and an Alternative Small-Sample Degrees-of-Freedom Method. American Statistician, 2009, 63, 389-399.	1.6	75
11	Salmonella in Belgian laying hens: An identification of risk factors. Preventive Veterinary Medicine, 2008, 83, 323-336.	1.9	74
12	Establishment of reference values for novel urinary biomarkers for renal damage in the healthy population: are age and gender an issue?. Clinical Chemistry and Laboratory Medicine, 2013, 51, 1795-802.	2.3	71
13	Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping. Spatial and Spatio-temporal Epidemiology, 2015, 14-15, 45-54.	1.7	64
14	The denominator in general practice, a new approach from the Intego database. Family Practice, 2005, 22, 442-447.	1.9	63
15	Does Air Pollution Trigger Infant Mortality in Western Europe? A Case-Crossover Study. Environmental Health Perspectives, 2011, 119, 1017-1022.	6.0	57
16	Modelling the early phase of the Belgian COVID-19 epidemic using a stochastic compartmental model and studying its implied future trajectories. Epidemics, 2021, 35, 100449.	3.0	55
17	Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure. Risk Analysis, 2007, 27, 111-123.	2.7	54
18	Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data. Journal of the American Statistical Association, 2011, 106, 959-971.	3.1	51

#	Article	IF	Citations
19	Presence of Antimicrobial Resistance and Antimicrobial Use in Sows Are Risk Factors for Antimicrobial Resistance in Their Offspring. Microbial Drug Resistance, 2015, 21, 50-58.	2.0	48
20	Human Salmonellosis: Estimation of Doseâ€Illness from Outbreak Data. Risk Analysis, 2008, 28, 427-440.	2.7	47
21	SOCRATES-CoMix: a platform for timely and open-source contact mixing data during and in between COVID-19 surges and interventions in over 20 European countries. BMC Medicine, 2021, 19, 254.	5.5	45
22	Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium. Veterinary Microbiology, 2008, 131, 133-144.	1.9	41
23	Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks. Preventive Veterinary Medicine, 2009, 90, 211-222.	1.9	39
24	Eight Years of the Great Influenza Survey to Monitor Influenza-Like Illness in Flanders. PLoS ONE, 2013, 8, e64156.	2.5	38
25	On the estimation of the reproduction number based on misreported epidemic data. Statistics in Medicine, 2014, 33, 1176-1192.	1.6	35
26	A data-driven metapopulation model for the Belgian COVID-19 epidemic: assessing the impact of lockdown and exit strategies. BMC Infectious Diseases, 2021, 21, 503.	2.9	35
27	European Surveillance of Antimicrobial Consumption (ESAC): outpatient cephalosporin use in Europe (1997-2009). Journal of Antimicrobial Chemotherapy, 2011, 66, vi25-vi35.	3.0	34
28	Element profiles and growth in Zn-sensitive and Zn-resistant Suilloid fungi. Mycorrhiza, 2005, 15, 628-634.	2.8	32
29	European Surveillance of Antimicrobial Consumption (ESAC): outpatient macrolide, lincosamide and streptogramin (MLS) use in Europe (1997–2009). Journal of Antimicrobial Chemotherapy, 2011, 66, vi37-vi45.	3.0	32
30	Spatiotemporal Evolution of Ebola Virus Disease at Sub-National Level during the 2014 West Africa Epidemic: Model Scrutiny and Data Meagreness. PLoS ONE, 2016, 11, e0147172.	2.5	32
31	European Surveillance of Antimicrobial Consumption (ESAC): outpatient use of tetracyclines, sulphonamides and trimethoprim, and other antibacterials in Europe (1997–2009). Journal of Antimicrobial Chemotherapy, 2011, 66, vi57-vi70.	3.0	31
32	Marginalized multilevel hurdle and zeroâ€inflated models for overdispersed and correlated count data with excess zeros. Statistics in Medicine, 2014, 33, 4402-4419.	1.6	30
33	Model-based inference for small area estimation with sampling weights. Spatial Statistics, 2016, 18, 455-473.	1.9	30
34	Analysing the composition of outpatient antibiotic use: a tutorial on compositional data analysis. Journal of Antimicrobial Chemotherapy, 2011, 66, vi89-vi94.	3.0	28
35	European Surveillance of Antimicrobial Consumption (ESAC): outpatient penicillin use in Europe (1997-2009). Journal of Antimicrobial Chemotherapy, 2011, 66, vi13-vi23.	3.0	27
36	The social contact hypothesis under the assumption of endemic equilibrium: Elucidating the transmission potential of VZV in Europe. Epidemics, 2015, 11, 14-23.	3.0	27

3

#	Article	IF	CITATIONS
37	A highâ€dimensional joint model for longitudinal outcomes of different nature. Statistics in Medicine, 2008, 27, 4408-4427.	1.6	26
38	COVID-19 mortality, excess mortality, deaths per million and infection fatality ratio, Belgium, 9 March 2020 to 28 June 2020. Eurosurveillance, 2022, 27, .	7.0	26
39	Reduction in hormone replacement therapy use and declining breast cancer incidence in the Belgian province of Limburg. Breast Cancer Research and Treatment, 2009, 118, 425-432.	2.5	25
40	Impact of human interventions on the spread of bluetongue virus serotype 8 during the 2006 epidemic in north-western Europe. Preventive Veterinary Medicine, 2008, 87, 145-161.	1.9	24
41	Estimating the population prevalence and force of infection directly from antibody titres. Statistical Modelling, 2012, 12, 441-462.	1.1	23
42	A generalized Poisson-gamma model for spatially overdispersed data. Spatial and Spatio-temporal Epidemiology, 2012, 3, 185-194.	1.7	23
43	On realized serial and generation intervals given control measures: The COVID-19 pandemic case. PLoS Computational Biology, 2021, 17, e1008892.	3.2	21
44	Factors affecting Bluetongue serotype 8 spread in Northern Europe in 2006: The geographical epidemiology. Preventive Veterinary Medicine, 2013, 110, 149-158.	1.9	20
45	A zero-inflated overdispersed hierarchical Poisson model. Statistical Modelling, 2014, 14, 439-456.	1.1	20
46	The influence of risk perceptions on close contact frequency during the SARS-CoV-2 pandemic. Scientific Reports, 2022, 12, 5192.	3.3	20
47	Use of fractional polynomials for dose-response modelling and quantitative risk assessment in developmental toxicity studies. Statistical Modelling, 2003, 3, 109-125.	1.1	18
48	Model Averaging in Microbial Risk Assessment Using Fractional Polynomials. Risk Analysis, 2008, 28, 891-905.	2.7	18
49	A Flexible Method to Measure Synchrony in Neuronal Firing. Journal of the American Statistical Association, 2008, 103, 149-161.	3.1	17
50	Modeling spatial learning in rats based on Morris water maze experiments. Pharmaceutical Statistics, 2010, 9, 10-20.	1.3	17
51	Bayesian spatio-temporal modeling of malaria risk in Rwanda. PLoS ONE, 2020, 15, e0238504.	2.5	17
52	Spatial analysis of breast and cervical cancer incidence in small geographical areas in Cuba, 1999–2003. European Journal of Cancer Prevention, 2009, 18, 395-403.	1.3	16
53	A joint model for hierarchical continuous and zero-inflated overdispersed count data. Journal of Statistical Computation and Simulation, 2015, 85, 552-571.	1.2	16
54	Disease mapping of zero-excessive mesothelioma data in Flanders. Annals of Epidemiology, 2017, 27, 59-66.e3.	1.9	16

#	Article	IF	Citations
55	Leveraging of SARS-CoV-2 PCR Cycle Thresholds Values to Forecast COVID-19 Trends. Frontiers in Medicine, 2021, 8, 743988.	2.6	16
56	Inferring age-specific differences in susceptibility to and infectiousness upon SARS-CoV-2 infection based on Belgian social contact data. PLoS Computational Biology, 2022, 18, e1009965.	3.2	16
57	A hierarchical modeling approach for risk assessment in developmental toxicity studies. Computational Statistics and Data Analysis, 2006, 51, 1848-1861.	1.2	15
58	Spatial small area smoothing models for handling survey data with nonresponse. Statistics in Medicine, 2017, 36, 3708-3745.	1.6	14
59	Infectious diseases epidemiology, quantitative methodology, and clinical research in the midst of the COVID-19 pandemic: Perspective from a European country. Contemporary Clinical Trials, 2020, 99, 106189.	1.8	14
60	The secondary transmission pattern of COVID-19 based on contact tracing in Rwanda. BMJ Global Health, 2021, 6, e004885.	4.7	14
61	Modeling overdispersed longitudinal binary data using a combined beta and normal random-effects model. Archives of Public Health, 2012, 70, 7.	2.4	13
62	A Dynamic Spatio-Temporal Model to Investigate the Effect of Cattle Movements on the Spread of Bluetongue BTV-8 in Belgium. PLoS ONE, 2013, 8, e78591.	2.5	13
63	Animal Ownership and Touching Enrich the Context of Social Contacts Relevant to the Spread of Human Infectious Diseases. PLoS ONE, 2015, 10, e0133461.	2.5	13
64	Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes. Microorganisms, 2020, 8, 1772.	3.6	13
65	Testing goodness of fit of parametric models for censored data. Statistics in Medicine, 2012, 31, 2374-2385.	1.6	12
66	Estimating herd-specific force of infection by using random-effects models for clustered binary data and monotone fractional polynomials. Journal of the Royal Statistical Society Series C: Applied Statistics, 2006, 55, 595-613.	1.0	11
67	Application of Semiparametric Mixed Models and Simultaneous Confidence Bands in a Cardiovascular Safety Experiment with Longitudinal Data. Journal of Biopharmaceutical Statistics, 2008, 18, 1043-1062.	0.8	11
68	Miscoding: A threat to the hospital care system. How to detect it?. Revue D'Epidemiologie Et De Sante Publique, 2009, 57, 169-177.	0.5	11
69	Structural differences in mixing behavior informing the role of asymptomatic infection and testing symptom heritability. Mathematical Biosciences, 2017, 285, 43-54.	1.9	11
70	Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping. Environmetrics, 2017, 28, e2465.	1.4	11
71	Predicting weed invasion in a sugarcane cultivar using multispectral image. Journal of Applied Statistics, 2019, 46, 1-12.	1.3	11
72	Spatial Distribution of HIV Prevalence among Young People in Mozambique. International Journal of Environmental Research and Public Health, 2020, 17, 885.	2.6	11

#	Article	IF	Citations
73	Variation in cancer incidence in northeastern Belgium and southeastern Netherlands seems unrelated to cadmium emission of zinc smelters. European Journal of Cancer Prevention, 2011, 20, 549-555.	1.3	10
74	Bluetongue surveillance system in Belgium: A stochastic evaluation of its risk-based approach effectiveness. Preventive Veterinary Medicine, 2013, 112, 48-57.	1.9	10
75	Spatioâ€temporal Bayesian model selection for disease mapping. Environmetrics, 2016, 27, 466-478.	1.4	10
76	Inference of the generalized-growth model via maximum likelihood estimation: A reflection on the impact of overdispersion. Journal of Theoretical Biology, 2020, 484, 110029.	1.7	10
77	Modeling combined continuous and ordinal outcomes in a clustered setting. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9, 515-530.	1.4	9
78	Effect of pH on the stability of kidney injury molecule 1 (KIM-1) and on the accuracy of its measurement in human urine. Clinica Chimica Acta, 2010, 411, 2083-2086.	1.1	9
79	Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. Scientific Reports, 2019, 9, 19122.	3.3	9
80	Bayesian testing for trend in a power model for clustered binary data. Environmental and Ecological Statistics, 2004, 11, 305-322.	3.5	8
81	On the Use of Historical Control Data in Pre-Clinical Safety Studies. Journal of Biopharmaceutical Statistics, 2007, 17, 493-509.	0.8	8
82	Analysis of crossâ€over designs with serial correlation within periods using semiâ€parametric mixed models. Statistics in Medicine, 2008, 27, 6009-6033.	1.6	8
83	Exploring cattle movements in Belgium. Preventive Veterinary Medicine, 2014, 116, 89-101.	1.9	8
84	Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros. Biometrical Journal, 2016, 58, 1390-1408.	1.0	8
85	Space-time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation. Annals of Epidemiology, 2017, 27, 42-51.	1.9	8
86	Spatially-dependent Bayesian model selection for disease mapping. Statistical Methods in Medical Research, 2018, 27, 250-268.	1.5	8
87	Comparison of different software implementations for spatial disease mapping. Spatial and Spatio-temporal Epidemiology, 2019, 31, 100302.	1.7	8
88	On the choice of the mesh for the analysis of geostatistical data using R-INLA. Communications in Statistics - Theory and Methods, 2020, 49, 203-220.	1.0	8
89	A linear mixed model to estimate COVIDâ€19â€induced excess mortality. Biometrics, 2023, 79, 417-425.	1.4	8
90	Development of statistical methods for the evaluation of data on antimicrobial resistance in bacterial isolates from animals and food. EFSA Supporting Publications, 2011, 8, 186E.	0.7	7

#	Article	IF	CITATIONS
91	Estimating Herd Prevalence on the Basis of Aggregate Testing of Animals. Journal of the Royal Statistical Society Series A: Statistics in Society, 2011, 174, 155-174.	1.1	7
92	Twoâ€stage model for multivariate longitudinal and survival data with application to nephrology research. Biometrical Journal, 2017, 59, 1204-1220.	1.0	7
93	Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data. International Journal of Environmental Research and Public Health, 2017, 14, 503.	2.6	7
94	Assessing the relationship between epidemic growth scaling and epidemic size: The 2014–16 Ebola epidemic in West Africa. Epidemiology and Infection, 2019, 147, e27.	2.1	7
95	Flexible modelling of neuron firing rates across different experimental conditions: an application to neural activity in the prefrontal cortex during a discrimination task. Journal of the Royal Statistical Society Series C: Applied Statistics, 2006, 55, 431-447.	1.0	6
96	The bivariate combined model for spatial data analysis. Statistics in Medicine, 2016, 35, 3189-3202.	1.6	6
97	Models for zeroâ€inflated, correlated count data with extra heterogeneity: when is it too complex?. Statistics in Medicine, 2017, 36, 345-361.	1.6	6
98	On the impact of residential history in the spatial analysis of diseases with a long latency period: A study of mesothelioma in Belgium. Statistics in Medicine, 2020, 39, 3840-3866.	1.6	6
99	Bayesian model selection methods in modeling small area colon cancer incidence. Annals of Epidemiology, 2016, 26, 43-49.	1.9	5
100	On the timing of interventions to preserve hospital capacity: lessons to be learned from the Belgian SARS-CoV-2 pandemic in 2020. Archives of Public Health, 2021, 79, 164.	2.4	5
101	The COVID-19 wave in Belgium during the Fall of 2020 and its association with higher education. PLoS ONE, 2022, 17, e0264516.	2.5	5
102	Spatial determination of successive spikes in the isolated cat duodenum. Neurogastroenterology and Motility, 2004, 16, 775-783.	3.0	4
103	GLMM approach to study the spatial and temporal evolution of spikes in the small intestine. Statistical Modelling, 2006, 6, 300-320.	1.1	4
104	Estimation of the Force of Infection from Current Status Data Using Generalized Linear Mixed Models. Journal of Applied Statistics, 2007, 34, 923-939.	1.3	4
105	Handling missingness when modeling the force of infection from clustered seroprevalence data. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12, 498-513.	1.4	4
106	Multiâ€disease analysis of maternal antibody decay using nonâ€linear mixed models accounting for censoring. Statistics in Medicine, 2015, 34, 2858-2871.	1.6	4
107	Serological diagnosis of bovine neosporosis: a Bayesian evaluation of two antibody ELISA tests for in vivo diagnosis in purchased and abortion cattle. Veterinary Record, 2015, 176, 598-598.	0.3	4
108	A Bayesian Kâ€PD model for synergy: A case study. Pharmaceutical Statistics, 2018, 17, 674-684.	1.3	4

#	Article	IF	Citations
109	Bayesian sequential integration within a preclinical pharmacokinetic and pharmacodynamic modeling framework: Lessons learned. Pharmaceutical Statistics, 2019, 18, 486-506.	1.3	4
110	Thyroid cancer incidence near nuclear sites in Belgium: An ecological study at small geographical level. International Journal of Cancer, 2020, 146, 3034-3043.	5.1	4
111	The Effects of Heatwaves on Human Morbidity in Primary Care Settings: A Case-Crossover Study. International Journal of Environmental Research and Public Health, 2022, 19, 832.	2.6	4
112	Joint modeling of hierarchically clustered and overdispersed non-gaussian continuous outcomes for comet assay data. Pharmaceutical Statistics, 2012, 11, 449-455.	1.3	3
113	A Bayesian, Generalized Frailty Model for Comet Assays. Journal of Biopharmaceutical Statistics, 2013, 23, 618-636.	0.8	3
114	Estimating the spatial covariance structure using the geoadditive model. Environmental and Ecological Statistics, 2017, 24, 341-361.	3.5	3
115	Using additive and coupled spatiotemporal SPDE models: a flexible illustration for predicting occurrence of Culicoides species. Spatial and Spatio-temporal Epidemiology, 2017, 23, 11-34.	1.7	3
116	The (in)stability of Bayesian model selection criteria in disease mapping. Spatial Statistics, 2021, 43, 100502.	1.9	3
117	Application of Penalized Splines in Analyzing Neuronal Data. Biometrical Journal, 2009, 51, 203-216.	1.0	2
118	Assessing neural activity related to decisionâ€making through flexible odds ratio curves and their derivatives. Statistics in Medicine, 2011, 30, 1695-1711.	1.6	2
119	European Surveillance of Antimicrobial Consumption (ESAC): outpatient cephalosporin use in Europe (1997-2009). Journal of Antimicrobial Chemotherapy, 2012, 67, 518-518.	3.0	2
120	Parametric and semi-nonparametric model strategies for the estimation of distributions of chemical contaminant data. Environmental and Ecological Statistics, 2015, 22, 423-444.	3.5	2
121	Cross-covariance functions for additive and coupled joint spatiotemporal SPDE models in R-INLA. Environmental and Ecological Statistics, 2017, 24, 551-586.	3.5	2
122	Marginalized models for right-truncated and interval-censored time-to-event data. Journal of Biopharmaceutical Statistics, 2019, 29, 1043-1067.	0.8	2
123	Spatial smoothing models to deal with the complex sampling design and nonresponse in the Florida BRFSS survey. Spatial and Spatio-temporal Epidemiology, 2019, 29, 59-70.	1.7	2
124	Integrated nested Laplace approximation for the analysis of count data via the combined model: A simulation study. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 819-836.	1.2	2
125	Spatial Modelling to Inform Public Health Based on Health Surveys: Impact of Unsampled Areas at Lower Geographical Scale. International Journal of Environmental Research and Public Health, 2020, 17, 786.	2.6	2
126	Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences and Engineering, 2014, 11, 27-48.	1.9	2

#	Article	IF	CITATIONS
127	A spatial model to jointly analyze selfâ€reported survey data of COVIDâ€19 symptoms and official COVIDâ€19 incidence data. Biometrical Journal, 2023, 65, .	1.0	2
128	Flexible modelling of simultaneously interval censored and truncated time-to-event data. Pharmaceutical Statistics, 2015, 14, 311-321.	1.3	1
129	Model averaging quantiles from data censored by a limit of detection. Biometrical Journal, 2016, 58, 331-356.	1.0	1
130	Disease mapping method comparing the spatial distribution of a disease with a control disease. Biometrical Journal, 2022, 64, 733-757.	1.0	1
131	273: The Impact of Air Pollution on Bronchiolitis Obliterans Syndrome and Mortality after Lung Transplantation. Journal of Heart and Lung Transplantation, 2010, 29, S92-S93.	0.6	0
132	Response to comments on "Marginalized multilevel hurdle and zeroâ€inflated models for overdispersed and correlated count data with excess zerosâ€i Statistics in Medicine, 2018, 37, 1942-1946.	1.6	0
133	Bayesian pooling versus sequential integration of small preclinical trials: a comparison within linear and nonlinear modeling frameworks. Journal of Biopharmaceutical Statistics, 2021, 31, 25-36.	0.8	0
134	Multi-population stochastic modeling of Ebola in Sierra Leone: Investigation of spatial heterogeneity. PLoS ONE, 2021, 16, e0250765.	2.5	0
135	Childhood leukemia near nuclear sites in Belgium: An ecological study at small geographical level. Cancer Epidemiology, 2021, 72, 101910.	1.9	0
136	Hierarchical modeling of endpoints of different types with generalized linear mixed models. , 2013, , 125-138.		0
137	Joint Modelling for Longitudinal and Time-to-Event Data: Application to Liver Transplantation Data. Lecture Notes in Computer Science, 2014, , 580-593.	1.3	0
138	HIV risk factors among adolescent and young adults: A geospatial–temporal analysis of Mozambique AIDS indicator survey data. Spatial and Spatio-temporal Epidemiology, 2022, 41, 100499.	1.7	0
139	Multivariate phenomenological models for real-time short-term forecasts of hospital capacity for COVID-19 in Belgium from March to June 2020. Epidemiology and Infection, 2022, 150, .	2.1	0
140	Title is missing!. , 2013, 8, e78591.		0
141	Title is missing!. , 2013, 8, e78591.		0