James E Haber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3294800/publications.pdf

Version: 2024-02-01

234 papers 32,554 citations

4960 84 h-index 171 g-index

263 all docs 263 docs citations

263 times ranked 29887 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Multiple Pathways of Recombination Induced by Double-Strand Breaks in <i>Saccharomyces cerevisiae</i> . Microbiology and Molecular Biology Reviews, 1999, 63, 349-404.	6.6	1,989
3	Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage. Cell, 1998, 94, 399-409.	28.9	729
4	DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature, 2004, 431, 1011-1017.	27.8	641
5	Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016428-a016428.	5.5	561
6	Patterns of somatic structural variation in human cancer genomes. Nature, 2020, 578, 112-121.	27.8	560
7	Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast. Cell, 2003, 115, 401-411.	28.9	539
8	DNA Damage Response Pathway Uses Histone Modification to Assemble a Double-Strand Break-Specific Cohesin Domain. Molecular Cell, 2004, 16, 991-1002.	9.7	524
9	Partners and pathways. Trends in Genetics, 2000, 16, 259-264.	6.7	519
10	INO80 and \hat{I}^3 -H2AX Interaction Links ATP-Dependent Chromatin Remodeling to DNA Damage Repair. Cell, 2004, 119, 767-775.	28.9	512
11	Surviving the Breakup: The DNA Damage Checkpoint. Annual Review of Genetics, 2006, 40, 209-235.	7.6	493
12	Distribution and Dynamics of Chromatin Modification Induced by a Defined DNA Double-Strand Break. Current Biology, 2004, 14, 1703-1711.	3.9	458
13	A phosphatase complex that dephosphorylates Î ³ H2AX regulates DNA damage checkpoint recovery. Nature, 2006, 439, 497-501.	27.8	439
14	Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature, 2007, 448, 820-823.	27.8	425
15	Analyses of non-coding somatic drivers in 2,658Âcancer whole genomes. Nature, 2020, 578, 102-111.	27.8	424
16	The Many Interfaces of Mre11. Cell, 1998, 95, 583-586.	28.9	395
17	Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells. Science, 2014, 343, 88-91.	12.6	387
18	DNA recombination: the replication connection. Trends in Biochemical Sciences, 1999, 24, 271-275.	7.5	383

#	Article	IF	CITATIONS
19	MATING-TYPE GENE SWITCHING INSACCHAROMYCES CEREVISIAE. Annual Review of Genetics, 1998, 32, 561-599.	7.6	369
20	Genetic Requirements for the Single-Strand Annealing Pathway of Double-Strand Break Repair in <i>Saccharomyces cerevisiae</i> . Genetics, 1996, 142, 693-704.	2.9	368
21	RAD50 and RAD51 Define Two Pathways That Collaborate to Maintain Telomeres in the Absence of Telomerase. Genetics, 1999, 152, 143-152.	2.9	364
22	Mating-Type Genes and <i>MAT</i> Switching in <i>Saccharomyces cerevisiae</i> Genetics, 2012, 191, 33-64.	2.9	359
23	Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Current Biology, 1998, 8, 657-662.	3.9	350
24	In Vivo Roles of Rad52, Rad54, and Rad55 Proteins in Rad51-Mediated Recombination. Molecular Cell, 2003, 12, 209-219.	9.7	334
25	Yeast Mre11 and Rad1 Proteins Define a Ku-Independent Mechanism To Repair Double-Strand Breaks Lacking Overlapping End Sequences. Molecular and Cellular Biology, 2003, 23, 8820-8828.	2.3	327
26	Recovery from Checkpoint-Mediated Arrest after Repair of a Double-Strand Break Requires Srs2 Helicase. Molecular Cell, 2002, 10, 373-385.	9.7	310
27	Histone chaperones: an escort network regulating histone traffic. Nature Structural and Molecular Biology, 2007, 14, 997-1007.	8.2	303
28	Break-Induced Replication and Recombinational Telomere Elongation in Yeast. Annual Review of Biochemistry, 2006, 75, 111-135.	11.1	294
29	Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes and Development, 2005, 19, 339-350.	5.9	287
30	Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature, 2013, 502, 389-392.	27.8	277
31	Regulation of Saccharomyces Rad53 Checkpoint Kinase during Adaptation from DNA Damage–Induced G2/M Arrest. Molecular Cell, 2001, 7, 293-300.	9.7	276
32	DNA Length Dependence of the Single-Strand Annealing Pathway and the Role of Saccharomyces cerevisiae RAD59 in Double-Strand Break Repair. Molecular and Cellular Biology, 2000, 20, 5300-5309.	2.3	264
33	Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature, 1996, 383, 644-646.	27.8	253
34	Double-Strand Break Repair in Yeast Requires Both Leading and Lagging Strand DNA Polymerases. Cell, 1999, 96, 415-424.	28.9	253
35	Heterochromatin is refractory to \hat{I}^3 -H2AX modification in yeast and mammals. Journal of Cell Biology, 2007, 178, 209-218.	5.2	234
36	Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes and Development, 2009, 23, 67-79.	5.9	226

#	Article	IF	CITATIONS
37	Increased Mutagenesis and Unique Mutation Signature Associated with Mitotic Gene Conversion. Science, 2010, 329, 82-85.	12.6	218
38	Meiotic Gene Conversion and Crossing Over Between Dispersed Homologous Sequences Occurs Frequently in <i>Saccharomyces cerevisiae</i> i>. Genetics, 1987, 115, 233-246.	2.9	215
39	NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature, 2001, 414, 666-669.	27.8	213
40	Expansions and Contractions in a Tandem Repeat Induced by Double-Strand Break Repair. Molecular and Cellular Biology, 1998, 18, 2045-2054.	2.3	211
41	Chromosome Break-Induced DNA Replication Leads to Nonreciprocal Translocations and Telomere Capture. Genetics, 1998, 150, 1037-1047.	2.9	207
42	Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Current Biology, 1999, 9, 767-770.	3.9	202
43	In vivo biochemistry: Physical monitoring of recombination induced by site-specific endonucleases. BioEssays, 1995, 17, 609-620.	2.5	200
44	Break-Induced DNA Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010397-a010397.	5 . 5	191
45	Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9315-9320.	7.1	187
46	Genetic Analysis of Yeast RPA1 Reveals Its Multiple Functions in DNA Metabolism. Genetics, 1998, 148, 989-1005.	2.9	185
47	PP2C Phosphatases Ptc2 and Ptc3 Are Required for DNA Checkpoint Inactivation after a Double-Strand Break. Molecular Cell, 2003, 11, 827-835.	9.7	184
48	The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair, 2016, 44, 6-16.	2.8	181
49	Genetic Requirements for RAD51 - and RAD54 -Independent Break-Induced Replication Repair of a Chromosomal Double-Strand Break. Molecular and Cellular Biology, 2001, 21, 2048-2056.	2.3	179
50	Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16016-16022.	7.1	176
51	Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature, 2021, 590, 660-665.	27.8	175
52	Characterization of RAD51 -Independent Break-Induced Replication That Acts Preferentially with Short Homologous Sequences. Molecular and Cellular Biology, 2002, 22, 6384-6392.	2.3	172
53	Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biology, 2006, 8, 1032-1034.	10.3	170
54	Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO Journal, 2008, 27, 1502-12.	7.8	159

#	Article	IF	Citations
55	RAD51 -Dependent Break-Induced Replication Differs in Kinetics and Checkpoint Responses from RAD51 -Mediated Gene Conversion. Molecular and Cellular Biology, 2005, 25, 933-944.	2.3	157
56	CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2040-E2047.	7.1	152
57	DNA Breaks Promote Genomic Instability by Impeding Proper Chromosome Segregation. Current Biology, 2004, 14, 2096-2106.	3.9	148
58	A MUTATION THAT PERMITS THE EXPRESSION OF NORMALLY SILENT COPIES OF MATING-TYPE INFORMATION IN $\langle i \rangle$ SACCHAROMYCES CEREVISIAE $\langle i \rangle$. Genetics, 1979, 93, 13-35.	2.9	148
59	Checkpoint-mediated control of replisome–fork association and signalling in response to replication pausing. Oncogene, 2004, 23, 1206-1213.	5.9	147
60	Mad2 Prolongs DNA Damage Checkpoint Arrest Caused by a Double-Strand Break via a Centromere-Dependent Mechanism. Current Biology, 2010, 20, 328-332.	3.9	147
61	MEIOTIC AND MITOTIC BEHAVIOR OF DICENTRIC CHROMOSOMES IN <i>SACCHAROMYCES CEREVISIAE</i> Genetics, 1984, 106, 185-205.	2.9	147
62	Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes and Development, 2010, 24, 1133-1144.	5.9	146
63	The <i>Saccharomyces cerevisiae</i> Chromatin Remodeler Fun30 Regulates DNA End Resection and Checkpoint Deactivation. Molecular and Cellular Biology, 2012, 32, 4727-4740.	2.3	143
64	Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nature Biotechnology, 2018, 36, 512-520.	17.5	138
65	HEALING OF BROKEN LINEAR DICENTRIC CHROMOSOMES IN YEAST. Genetics, 1984, 106, 207-226.	2.9	131
66	ANALYSIS OF MEIOSIS-DEFECTIVE MUTATIONS IN YEAST BY PHYSICAL MONITORING OF RECOMBINATION. Genetics, 1986, 113, 551-567.	2.9	129
67	Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11–RAD50–XRS2 complex. EMBO Journal, 2000, 19, 2381-2390.	7.8	128
68	Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends in Biochemical Sciences, 1998, 23, 244-245.	7.5	127
69	Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair. PLoS Biology, 2004, 2, e21.	5.6	127
70	A 700 bp cis-Acting Region Controls Mating-Type Dependent Recombination Along the Entire Left Arm of Yeast Chromosome III. Cell, 1996, 87, 277-285.	28.9	122
71	Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses. Science, 2007, 315, 1411-1415.	12.6	121
72	A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes and Development, 2009, 23, 291-303.	5.9	121

#	Article	IF	CITATIONS
73	Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature, 2017, 544, 377-380.	27.8	120
74	Role of DNA Replication Proteins in Double-Strand Break-Induced Recombination in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2004, 24, 6891-6899.	2.3	118
75	Mutations Arising During Repair of Chromosome Breaks. Annual Review of Genetics, 2012, 46, 455-473.	7.6	117
76	Mec1/Tel1 Phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA Damage Checkpoint Responses. Cell, 2007, 130, 499-511.	28.9	116
77	<i>RAD52</i> -INDEPENDENT MITOTIC GENE CONVERSION IN <i>SACCHAROMYCES CEREVISIAE</i> FREQUENTLY RESULTS IN CHROMOSOMAL LOSS. Genetics, 1985, 111, 7-22.	2.9	116
78	Chromosome rearrangements via template switching between diverged repeated sequences. Genes and Development, 2014, 28, 2394-2406.	5.9	114
79	In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO Journal, 2004, 23, 939-949.	7.8	110
80	Mre11–Rad50–Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO Journal, 2008, 27, 1953-1962.	7.8	110
81	Replicon Dynamics, Dormant Origin Firing, and Terminal Fork Integrity after Double-Strand Break Formation. Cell, 2009, 137, 247-258.	28.9	110
82	DNA Repair: The Search for Homology. BioEssays, 2018, 40, e1700229.	2.5	106
83	Functional Interplay between the 53BP1-Ortholog Rad9 and the Mre11 Complex Regulates Resection, End-Tethering and Repair of a Double-Strand Break. PLoS Genetics, 2015, 11, e1004928.	3.5	103
84	Checkpoint Responses to DNA Double-Strand Breaks. Annual Review of Biochemistry, 2020, 89, 103-133.	11.1	99
85	The Saccharomyces cerevisiae Msh2 Mismatch Repair Protein Localizes to Recombination Intermediates In Vivo. Molecular Cell, 2000, 5, 789-799.	9.7	97
86	Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1151-1156.	7.1	92
87	Mating-type gene switching in Saccharomyces cerevisiae. Trends in Genetics, 1992, 8, 446-452.	6.7	90
88	Gene Conversion and Crossing Over Along the 405-kb Left Arm of Saccharomyces cerevisiae Chromosome VII. Genetics, 2004, 168, 49-63.	2.9	90
89	The Fuss about Mus81. Cell, 2001, 107, 551-554.	28.9	89
90	Phosphorylation of Slx4 by Mec1 and Tel1 Regulates the Single-Strand Annealing Mode of DNA Repair in Budding Yeast. Molecular and Cellular Biology, 2007, 27, 6433-6445.	2.3	89

#	Article	IF	CITATIONS
91	Real-time analysis of double-strand DNA break repair by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3108-3115.	7.1	87
92	Gatekeepers of recombination. Nature, 1999, 398, 665-667.	27.8	86
93	Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nature Structural and Molecular Biology, 2014, 21, 103-109.	8.2	85
94	A Life Investigating Pathways That Repair Broken Chromosomes. Annual Review of Genetics, 2016, 50, 1-28.	7.6	83
95	CHARACTERIZATION OF A MUTATION IN YEAST CAUSING NONRANDOM CHROMOSOME LOSS DURING MITOSIS. Genetics, 1978, 88, 651-671.	2.9	80
96	Sgs1 and Exo1 Redundantly Inhibit Break-Induced Replication and De Novo Telomere Addition at Broken Chromosome Ends. PLoS Genetics, 2010, 6, e1000973.	3 . 5	78
97	Chromosome position determines the success of double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E146-54.	7.1	78
98	Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. Molecular Cell, 2017, 65, 515-526.e3.	9.7	77
99	Evidence that DNA polymerase \hat{l} contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nature Communications, 2018, 9, 858.	12.8	77
100	The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1239, 81-90.	2.6	76
101	Recombination: a frank view of exchanges and vice versa. Current Opinion in Cell Biology, 2000, 12, 286-292.	5.4	76
102	Removal of One Nonhomologous DNA End During Gene Conversion by a RAD1- and MSH2-Independent Pathway. Genetics, 1999, 151, 1409-1423.	2.9	76
103	The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Current Biology, 2001, 11, 1053-1057.	3.9	73
104	A NEW GENE AFFECTING THE EFFICIENCY OF MATING-TYPE INTERCONVERSIONS IN HOMOTHALLIC STRAINS OF <i>SACCHAROMYCES CEREVISIAE </i>	2.9	72
105	Lucky breaks: analysis of recombination in Saccharomyces. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 451, 53-69.	1.0	71
106	Cdk1 Targets Srs2 to Complete Synthesis-Dependent Strand Annealing and to Promote Recombinational Repair. PLoS Genetics, 2010, 6, e1000858.	3.5	70
107	RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes and Development, 2001, 15, 1055-1060.	5.9	68
108	Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination. Cell, 1980, 22, 277-289.	28.9	67

#	Article	IF	Citations
109	Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair, 2002, 1, 27-40.	2.8	67
110	Repairing a double–strand chromosome break by homologous recombination: revisiting Robin Holliday's model. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 79-86.	4.0	67
111	Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chemical Biology, 2018, 13, 397-405.	3.4	67
112	Separation-of-Function Mutations in <i>Saccharomyces cerevisiae MSH2</i> That Confer Mismatch Repair Defects but Do Not Affect Nonhomologous-Tail Removal during Recombination. Molecular and Cellular Biology, 1999, 19, 7558-7567.	2.3	66
113	Sir-Ku-itous Routes to Make Ends Meet. Cell, 1999, 97, 829-832.	28.9	63
114	Mating type–dependent constraints on the mobility of the left arm of yeast chromosome III. Journal of Cell Biology, 2004, 164, 361-371.	5 . 2	62
115	Microhomology-Dependent End Joining and Repair of Transposon-Induced DNA Hairpins by Host Factors in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2004, 24, 1351-1364.	2.3	61
116	Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair, 2006, 5, 998-1009.	2.8	60
117	BISEXUAL MATING BEHAVIOR IN A DIPLOID OF <i>SACCHAROMYCES CEREVISIAE</i> CENETICALLY CONTROLLED NON-RANDOM CHROMOSOME LOSS DURING VEGETATIVE GROWTH. Genetics, 1974, 78, 843-858.	2.9	60
118	DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E41-9.	7.1	59
119	MOP2 (SLA2) Affects the Abundance of the Plasma Membrane H+-ATPase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 6815-6823.	3.4	58
120	Cas9-mediated gene editing in Saccharomyces cerevisiae. Protocol Exchange, 0, , .	0.3	58
121	Conservative Inheritance of Newly Synthesized DNA in Double-Strand Break-Induced Gene Conversion. Molecular and Cellular Biology, 2006, 26, 9424-9429.	2.3	56
122	Mating-type Gene Switching in <i>Saccharomyces cerevisiae</i> . Microbiology Spectrum, 2015, 3, MDNA3-0013-2014.	3.0	56
123	Alternative endings. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 405-406.	7.1	54
124	Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1–Rad10-dependent cleavage of non-homologous DNA tails. DNA Repair, 2010, 9, 718-726.	2.8	54
125	Repair of DNA Double Strand Breaks: In Vivo Biochemistry. Methods in Enzymology, 2006, 408, 416-429.	1.0	52
126	Frequent Interchromosomal Template Switches during Gene Conversion in S. cerevisiae. Molecular Cell, 2014, 55, 615-625.	9.7	52

#	Article	IF	CITATIONS
127	A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1158-E1167.	7.1	52
128	Subtelomeric regions of yeast chromosomes contain a 36 base-pair tandemly repeated sequence. Nucleic Acids Research, 1984, 12, 7105-7121.	14.5	51
129	Evolutionarily recent transfer of a group I mitochondrial intron to telomere regions in Saccharomyces cerevisiae. Current Genetics, 1991, 20, 411-415.	1.7	51
130	Functional Interactions Between Sae2 and the Mre11 Complex. Genetics, 2008, 178, 711-723.	2.9	51
131	Yeast Rad52 and Rad51 Recombination Proteins Define a Second Pathway of DNA Damage Assessment in Response to a Single Double-Strand Break. Molecular and Cellular Biology, 2003, 23, 8913-8923.	2.3	50
132	Regulation of Budding Yeast Mating-Type Switching Donor Preference by the FHA Domain of Fkh1. PLoS Genetics, 2012, 8, e1002630.	3.5	49
133	PP2C phosphatases promote autophagy by dephosphorylation of the Atg1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1613-1620.	7.1	48
134	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	3.2	47
135	V(D)J Recombination and RAG-Mediated Transposition in Yeast. Molecular Cell, 2003, 12, 489-499.	9.7	46
136	Rules of Donor Preference in Saccharomyces Mating-Type Gene Switching Revealed by a Competition Assay Involving Two Types of Recombination. Genetics, 1997, 147, 399-407.	2.9	46
137	Cell Cycle Dependency of Sporulation in Saccharomyces cerevisiae. Journal of Bacteriology, 1972, 109, 1027-1033.	2.2	46
138	Mechanisms restraining breakâ€induced replication at twoâ€ended DNA doubleâ€strand breaks. EMBO Journal, 2021, 40, e104847.	7.8	45
139	The DNA Damage Checkpoint Signal in Budding Yeast Is Nuclear Limited. Molecular Cell, 2000, 6, 487-492.	9.7	44
140	Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. Genes and Development, 2002, 16, 2085-2096.	5.9	44
141	EVIDENCE OF CHROMOSOMAL BREAKS NEAR THE MATING-TYPE LOCUS OF SACCHAROMYCES CEREVISIAE THAT ACCOMPANY MATα x MATα MATINGS. Genetics, 1981, 99, 383-403.	2.9	44
142	Protein Phosphatases Pph3, Ptc2, and Ptc3 Play Redundant Roles in DNA Double-Strand Break Repair by Homologous Recombination. Molecular and Cellular Biology, 2011, 31, 507-516.	2.3	43
143	Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Research, 2015, 43, 6889-6901.	14.5	43
144	Uses and abuses of HO endonuclease. Methods in Enzymology, 2002, 350, 141-164.	1.0	42

#	Article	IF	CITATIONS
145	Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in <i>Saccharomyces cerevisiae</i> io <i>179, 199-211.</i>	2.9	41
146	Minisatellite Origins in Yeast and Humans. Genomics, 1998, 48, 132-135.	2.9	38
147	The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11358-11363.	7.1	38
148	Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Molecular Cell, 2019, 75, 859-874.e4.	9.7	38
149	Different Mating-Type-Regulated Genes Affect the DNA Repair Defects of Saccharomyces RAD51, RAD52 and RAD55 Mutants. Genetics, 2006, 174, 41-55.	2.9	37
150	DNA replication: the recombination connection. Trends in Cell Biology, 2022, 32, 45-57.	7.9	37
151	Systematic Triple-Mutant Analysis Uncovers Functional Connectivity between Pathways Involved in Chromosome Regulation. Cell Reports, 2013, 3, 2168-2178.	6.4	36
152	Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21354-21363.	7.1	35
153	Gene Amplification: Yeast Takes a Turn. Cell, 2006, 125, 1237-1240.	28.9	34
154	Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 667-675.	2.9	33
155	A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genetics, 2020, 16, e1008689.	3.5	33
156	A CIS-ACTING MUTATION WITHIN THE MAT Âa LOCUS OF SACCHAROMYCES CEREVISIAE THAT PREVENTS EFFICIENT HOMOTHALLIC MATING-TYPE SWITCHING. Genetics, 1980, 94, 341-360.	2.9	32
157	Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Current Genetics, 2018, 64, 87-96.	1.7	30
158	Expansions and Contractions in 36-bp Minisatellites by Gene Conversion in Yeast. Genetics, 2001, 158, 155-166.	2.9	30
159	A locus control region regulates yeast recombination. Trends in Genetics, 1998, 14, 317-321.	6.7	29
160	Dynamics of Homology Searching During Gene Conversion in <i>Saccharomyces cerevisiae</i> Revealed by Donor Competition. Genetics, 2011, 189, 1225-1233.	2.9	28
161	Chromatin modifications and chromatin remodeling during DNA repair in budding yeast. Current Opinion in Genetics and Development, 2013, 23, 166-173.	3.3	28
162	Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genetics, 2019, 15, e1008001.	3.5	28

#	Article	IF	Citations
163	Effect of Chromosome Tethering on Nuclear Organization in Yeast. PLoS ONE, 2014, 9, e102474.	2.5	27
164	Saccharomyces cerevisiae Donor Preference During Mating-Type Switching Is Dependent on Chromosome Architecture and Organization. Genetics, 2006, 173, 1197-1206.	2.9	24
165	Mating-type switching by homology-directed recombinational repair: a matter of choice. Current Genetics, 2019, 65, 351-362.	1.7	24
166	Genetic interaction mapping informs integrative structure determination of protein complexes. Science, 2020, 370, .	12.6	24
167	Modeling a conformationally sensitive region of the membrane sector of the fungal plasma membrane proton pump. Journal of Bioenergetics and Biomembranes, 1994, 26, 101-115.	2.3	23
168	Genetic Probing of the First and Second Transmembrane Helices of the Plasma Membrane H+-ATPase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 581-587.	3.4	23
169	DNA damage signaling triggers the cytoplasm-to-vacuole pathway of autophagy to regulate cell cycle progression. Autophagy, 2013, 9, 440-441.	9.1	23
170	Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair. Genes and Development, 2016, 30, 1211-1224.	5.9	23
171	Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae. PLoS Genetics, 2016, 12, e1005976.	3.5	22
172	Cell Cycle-Dependent Regulation of Saccharomyces cerevisiae Donor Preference during Mating-Type Switching by SBF (Swi4/Swi6) and Fkh1. Molecular and Cellular Biology, 2006, 26, 5470-5480.	2.3	21
173	Monitoring DNA Recombination Initiated by HO Endonuclease. Methods in Molecular Biology, 2012, 920, 349-370.	0.9	21
174	Mec1ATR Autophosphorylation and Ddc2ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling. Cell Reports, 2019, 28, 1090-1102.e3.	6.4	19
175	Physical Monitoring of HO-Induced Homologous Recombination. , 1999, 113, 403-415.		18
176	Deciphering the DNA Damage Response. Cell, 2015, 162, 1183-1185.	28.9	18
177	The MRE11-RAD50-XRS2 Complex, in Addition to Other Non-homologous End-joining Factors, Is Required for V(D)J Joining in Yeast*. Journal of Biological Chemistry, 2005, 280, 20247-20252.	3.4	17
178	Caffeine inhibits gene conversion by displacing Rad51 from ssDNA. Nucleic Acids Research, 2015, 43, 6902-6918.	14.5	17
179	Genome Stability., 0, , .		17
180	Transposition of a tandem duplication of yeast mating-type genes. Nature, 1982, 296, 768-770.	27.8	16

#	Article	IF	CITATIONS
181	The suppressor gene scl1+ of Saccharomyces cerevisiae is essential for growth. Gene, 1989, 83, 271-279.	2.2	16
182	SMC Proteins, New Players in the Maintenance of Genomic Stability. Cell Cycle, 2007, 6, 914-918.	2.6	16
183	Position effects influencing intrachromosomal repair of a double-strand break in budding yeast. PLoS ONE, 2017, 12, e0180994.	2.5	16
184	Quantitative analysis of triple-mutant genetic interactions. Nature Protocols, 2014, 9, 1867-1881.	12.0	15
185	The budding yeast Polo-like kinase localizes to distinct populations at centrosomes during mitosis. Molecular Biology of the Cell, 2017, 28, 1011-1020.	2.1	15
186	TOPping Off Meiosis. Molecular Cell, 2015, 57, 577-581.	9.7	14
187	New insights into donor directionality of mating-type switching in Schizosaccharomyces pombe. PLoS Genetics, 2018, 14, e1007424.	3.5	14
188	Single-strand template repair: key insights to increase the efficiency of gene editing. Current Genetics, 2021, 67, 747-753.	1.7	14
189	Inactivation of Ku-Mediated End Joining Suppresses mec1Δ Lethality by Depleting the Ribonucleotide Reductase Inhibitor Sml1 through a Pathway Controlled by Tel1 Kinase and the Mre11 Complex. Molecular and Cellular Biology, 2005, 25, 10652-10664.	2.3	13
190	<i>MTE1</i> Functions with <i>MPH1</i> in Double-Strand Break Repair. Genetics, 2016, 203, 147-157.	2.9	13
191	Chromosome-refolding model of mating-type switching in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6929-E6938.	7.1	13
192	Mutations of G158 and their second-site revertants in the plasma membrane H+-ATPase gene (PMA1) in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1234, 127-132.	2.6	12
193	Function and Evolution of HO and VDE Endonucleases in Fungi. , 2005, , 161-175.		12
194	Evolution of Models of Homologous Recombination. Genome Dynamics and Stability, 2007, , 1-64.	1.1	10
195	Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication. Genome Research, 2021, 31, 775-788.	5.5	10
196	Physical Monitorin of Meiotic and Mitotic Recomination in Yeast. Progress in Molecular Biology and Translational Science, 1988, 35, 209-259.	1.9	9
197	Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast. DNA Repair, 2016, 47, 21-29.	2.8	9
198	Chromosome Breakage and Repair. Genetics, 2006, 173, 1181-1185.	2.9	9

#	Article	IF	CITATIONS
199	Modified chromosome structure caused by phosphomimetic H2A modulates the DNA damage response by increasing chromatin mobility in yeast. Journal of Cell Science, 2021, 134, .	2.0	8
200	Hypermutation: give us a break. Nature Immunology, 2001, 2, 902-903.	14.5	7
201	Decisions, Decisions: Donor Preference during Budding Yeast Mating-Type Switching. , 0, , 159-170.		7
202	A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genetics, 2016, 12, e1006021.	3.5	7
203	ASaccharomyces servazzii clone homologous toSaccharomyces cerevisiae chromosome III spanningKAR4,ARS 304 andSPB1 lacks the recombination enhancer but contains an unknown ORF. Yeast, 2001, 18, 789-795.	1.7	5
204	Genetic Approaches to Structure-Function Analysis in the Yeast Plasma Membrane H+-ATPase. Advances in Molecular and Cell Biology, 1997, , 143-166.	0.1	4
205	Telomeres Thrown for a Loop. Molecular Cell, 2004, 16, 502-503.	9.7	4
206	Corrections and Clarifications. Science, 2006, 313, 1045a-1045a.	12.6	4
207	Physical Monitoring of HO-Induced Homologous Recombination. , 1999, , 403-415.		4
208	Mating-Type Control of DNA Repair and Recombination in Saccharomyces cerevisiae., 0,, 107-124.		4
209	Determining the kinetics of break-induced replication (BIR) by the assay for monitoring BIR elongation rate (AMBER). Methods in Enzymology, 2021, 661, 139-154.	1.0	4
210	Aging: The Sins of the Parents. Current Biology, 2003, 13, R843-R845.	3.9	3
211	PP2C Phosphatases Ptc2 and Ptc3 Are Required for DNA Checkpoint Inactivation after a Double-Strand Break. Molecular Cell, 2003, 11, 1119.	9.7	2
212	Dephosphorylation of the Atg1 kinase complex by type 2C protein phosphatases. Molecular and Cellular Oncology, 2019, 6, 1588658.	0.7	2
213	[11] Physical monitoring of mitotic and meiotic recombination in Saccharomyces cerevisiae. Methods in Molecular Genetics, 1995, , 204-226.	0.6	1
214	QnAs with James E. Haber. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5479-5479.	7.1	1
215	The rule of three. Nature Reviews Molecular Cell Biology, 2016, 17, 333-333.	37.0	1
216	Chromosomes at loose ends. Nature Cell Biology, 2016, 18, 257-259.	10.3	1

#	Article	IF	CITATIONS
217	Assaying Mutations Associated With Gene Conversion Repair of a Double-Strand Break. Methods in Enzymology, 2018, 601, 145-160.	1.0	1
218	Learning Yeast Genetics from Miro Radman. Cells, 2021, 10, 945.	4.1	1
219	Multiple mechanisms of repairing meganuclease-induced double-strand DNA breaks in budding yeast. Topics in Current Genetics, 2007, , 285-316.	0.7	1
220	The DNA Damage Response Induces Autophagy via Mec1(ATR) and Tel1(ATM) to Regulate the Initiation of Anaphase. FASEB Journal, 2015, 29, 879.16.	0.5	1
221	Nucleosome Dynamics Around a DNA Double Stranded Break During Repair by Gene Conversion FASEB Journal, 2015, 29, 709.8.	0.5	1
222	Monitoring Gene Conversion in Budding Yeast by Southern Blot Analysis. Methods in Molecular Biology, 2021, 2153, 221-238.	0.9	1
223	The suppressor gene scll+ of Saccharomyces cerevisiae is essential for growth. Gene, 1990, 89, 151.	2.2	0
224	DNA repair by recycling reverse transcripts. Nature, 1997, 386, 32-32.	27.8	0
225	Multiple Mechanisms of Repairing Meganuclease-Induced Double-Strand DNA Breaks in Budding Yeast. , 2006, , 285-316.		O
226	Regulation of the DNA Damage Response by Autophagy. , 2017, , 213-236.		0
227	The DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase. FASEB Journal, 2013, 27, 545.2.	0.5	0
228	Investigating the properties of a repair replicationâ€fork in the budding yeast Saccharomyces cerevisiae. FASEB Journal, 2013, 27, 542.5.	0.5	0
229	Role of the Recombination Enhancer in matingâ€ŧype switching in budding yeast. FASEB Journal, 2013, 27, 542.7.	0.5	0
230	Mating-type Gene Switching in <i>Saccharomyces cerevisiae</i> ., 0, , 491-514.		0
231	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0
232	A Rad51-independent pathway promotes single-strand template repair in gene editing., 2020, 16, e1008689.		0
233	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0
234	A Rad51-independent pathway promotes single-strand template repair in gene editing. , 2020, 16, e1008689.		0