## Anna Cohuet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3294090/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Predicting the public health impact of a malaria transmission-blocking vaccine. Nature Communications, 2021, 12, 1494.                                                                                   | 12.8 | 19        |
| 2  | Mosquito Attractants. Journal of Chemical Ecology, 2021, 47, 351-393.                                                                                                                                    | 1.8  | 37        |
| 3  | A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors. Scientific Reports, 2021, 11, 9344. | 3.3  | 14        |
| 4  | Effect of seasonal malaria chemoprevention plus azithromycin on Plasmodium falciparum transmission: gametocyte infectivity and mosquito fitness. Malaria Journal, 2021, 20, 326.                         | 2.3  | 1         |
| 5  | Contrasting effects of the alkaloid ricinine on the capacity of Anopheles gambiae and Anopheles coluzzii to transmit Plasmodium falciparum. Parasites and Vectors, 2021, 14, 479.                        | 2.5  | 11        |
| 6  | Functional Characterization and Comparison of Plasmodium falciparum Proteins as Targets of Transmission-blocking Antibodies. Molecular and Cellular Proteomics, 2020, 19, 155-166.                       | 3.8  | 16        |
| 7  | High Plasmodium infection intensity in naturally infected malaria vectors in Africa. International<br>Journal for Parasitology, 2020, 50, 985-996.                                                       | 3.1  | 25        |
| 8  | Different distribution of malaria parasite in left and right extremities of vertebrate hosts translates into differences in parasite transmission. Scientific Reports, 2020, 10, 10183.                  | 3.3  | 2         |
| 9  | Effect of irradiation on the survival and susceptibility of female Anopheles arabiensis to natural isolates of Plasmodium falciparum. Parasites and Vectors, 2020, 13, 266.                              | 2.5  | 7         |
| 10 | Prior contact with permethrin decreases its irritancy at the following exposure among a pyrethroid-resistant malaria vector Anopheles gambiae. Scientific Reports, 2019, 9, 8177.                        | 3.3  | 9         |
| 11 | Efficacy of vector control tools against malaria-infected mosquitoes. Scientific Reports, 2019, 9, 6664.                                                                                                 | 3.3  | 11        |
| 12 | Behavioural adaptations of mosquito vectors to insecticide control. Current Opinion in Insect<br>Science, 2019, 34, 48-54.                                                                               | 4.4  | 89        |
| 13 | Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evolutionary Applications, 2018, 11, 456-469.                      | 3.1  | 52        |
| 14 | Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature<br>Communications, 2018, 9, 558.                                                                        | 12.8 | 83        |
| 15 | DEET Efficacy Increases With Age in the Vector Mosquitoes Anopheles gambiae s.s. and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 2018, 55, 1542-1548.                          | 1.8  | 9         |
| 16 | Effect of DEET-multiple exposures on behavior and life history traits in the malaria mosquito<br>Anopheles gambiae (s.s.). Parasites and Vectors, 2018, 11, 432.                                         | 2.5  | 8         |
| 17 | Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density. ELife, 2018, 7, .                                                              | 6.0  | 93        |
| 18 | Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development<br>in Anopheles gambiae. Scientific Reports, 2017, 7, 40655.                                          | 3.3  | 69        |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Malaria Vector Control Still Matters despite Insecticide Resistance. Trends in Parasitology, 2017, 33,<br>610-618.                                                                                                                                   | 3.3  | 39        |
| 20 | No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by<br>Plasmodium falciparum. Scientific Reports, 2017, 7, 9415.                                                                                   | 3.3  | 23        |
| 21 | The Peptidoglycan Recognition Proteins PGRPLA and PGRPLB Regulate Anopheles Immunity to Bacteria and Affect Infection by Plasmodium. Journal of Innate Immunity, 2017, 9, 333-342.                                                                   | 3.8  | 41        |
| 22 | Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations. Scientific Reports, 2017, 7, 6766.                                                                                        | 3.3  | 35        |
| 23 | Influence of pyrethroÃ⁻d-treated bed net on host seeking behavior of Anopheles gambiae s.s. carrying<br>the kdr allele. PLoS ONE, 2017, 12, e0164518.                                                                                                | 2.5  | 20        |
| 24 | Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine<br>transmission-reducing activity of antibodies against P. falciparum sexual stage antigens. Parasites and<br>Vectors, 2017, 10, 489.                                | 2.5  | 19        |
| 25 | Consequences of insecticide resistance on malaria transmission. PLoS Pathogens, 2017, 13, e1006499.                                                                                                                                                  | 4.7  | 56        |
| 26 | Identification and Antibioresistance Characterisation of Culturable Bacteria in the Intestinal<br>Microbiota of Mosquitoes. Vector Biology Journal, 2017, 02, .                                                                                      | 0.4  | 2         |
| 27 | Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae. Scientific Reports, 2016, 6, 29755.                                                                                                     | 3.3  | 65        |
| 28 | Differential Effects of Azithromycin, Doxycycline, and Cotrimoxazole in Ingested Blood on the<br>Vectorial Capacity of Malaria Mosquitoes. Open Forum Infectious Diseases, 2016, 3, ofw074.                                                          | 0.9  | 26        |
| 29 | Learning and Memory in Disease Vector Insects. Trends in Parasitology, 2016, 32, 761-771.                                                                                                                                                            | 3.3  | 34        |
| 30 | Larval nutritional stress affects vector life history traits and human malaria transmission. Scientific<br>Reports, 2016, 6, 36778.                                                                                                                  | 3.3  | 42        |
| 31 | Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria. PLoS Pathogens, 2016, 12, e1005773.                                                                                                                                           | 4.7  | 54        |
| 32 | Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the<br>human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Frontiers in<br>Ecology and Evolution, 2015, 3, .              | 2.2  | 33        |
| 33 | Plasmodium falciparum Mating Patterns and Mosquito Infectivity of Natural Isolates of Gametocytes.<br>PLoS ONE, 2015, 10, e0123777.                                                                                                                  | 2.5  | 44        |
| 34 | Experimental study of the relationship between Plasmodium gametocyte density and infection success<br>in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions.<br>Experimental Parasitology, 2015, 149, 74-83. | 1.2  | 69        |
| 35 | Human-to-mosquito transmission efficiency increases as malaria is controlled. Nature<br>Communications, 2015, 6, 6054.                                                                                                                               | 12.8 | 72        |
| 36 | Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria.<br>Nature Communications, 2015, 6, 5921.                                                                                                        | 12.8 | 154       |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum.<br>Scientific Reports, 2015, 5, 11193.                                                                                                 | 3.3 | 106       |
| 38 | Insecticide exposure impacts vector–parasite interactions in insecticide-resistant malaria vectors.<br>Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140389.                                                     | 2.6 | 55        |
| 39 | A heavy legacy: offspring of malaria-infected mosquitoes show reduced disease resistance. Malaria<br>Journal, 2014, 13, 442.                                                                                                             | 2.3 | 35        |
| 40 | Transmission blocking activity of Azadirachta indica and Guiera senegalensis extracts on the<br>sporogonic development of Plasmodium falciparum field isolates in Anopheles coluzzii mosquitoes.<br>Parasites and Vectors, 2014, 7, 185. | 2.5 | 19        |
| 41 | Individual experience affects host choice in malaria vector mosquitoes. Parasites and Vectors, 2014, 7, 249.                                                                                                                             | 2.5 | 21        |
| 42 | Stress dependent infection cost of the human malaria agent Plasmodium falciparum on its natural vector Anopheles coluzzii. Infection, Genetics and Evolution, 2014, 25, 57-65.                                                           | 2.3 | 22        |
| 43 | Interplay Between Plasmodium Infection and Resistance to Insecticides in Vector Mosquitoes. Journal of Infectious Diseases, 2014, 210, 1464-1470.                                                                                        | 4.0 | 59        |
| 44 | New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human/pathogen/vector interactions. Journal of Experimental Biology, 2013, 216, 2783-8.                       | 1.7 | 53        |
| 45 | Studying fitness cost of Plasmodium falciparum infection in malaria vectors: validation of an appropriate negative control. Malaria Journal, 2013, 12, 2.                                                                                | 2.3 | 41        |
| 46 | Human Skin Volatiles: A Review. Journal of Chemical Ecology, 2013, 39, 569-578.                                                                                                                                                          | 1.8 | 178       |
| 47 | Non-Genetic Determinants of Mosquito Competence for Malaria Parasites. PLoS Pathogens, 2013, 9, e1003365.                                                                                                                                | 4.7 | 99        |
| 48 | Anti-Pfs25 Human Plasma Reduces Transmission of Plasmodium falciparum Isolates That Have Diverse<br>Genetic Backgrounds. Infection and Immunity, 2013, 81, 1984-1989.                                                                    | 2.2 | 17        |
| 49 | Insecticide Resistance Alleles Affect Vector Competence of Anopheles gambiae s.s. for Plasmodium<br>falciparum Field Isolates. PLoS ONE, 2013, 8, e63849.                                                                                | 2.5 | 109       |
| 50 | Measuring the blockade of malaria transmission – An analysis of the Standard Membrane Feeding<br>Assay. International Journal for Parasitology, 2012, 42, 1037-1044.                                                                     | 3.1 | 162       |
| 51 | A user-friendly software to easily count Anopheles egg batches. Parasites and Vectors, 2012, 5, 122.                                                                                                                                     | 2.5 | 27        |
| 52 | Population genetic structure of the malaria vector Anopheles funestus, in a recently re-colonized<br>area of the Senegal River basin and human-induced environmental changes. Parasites and Vectors,<br>2012, 5, 188.                    | 2.5 | 16        |
| 53 | Plasmodium falciparum Produce Lower Infection Intensities in Local versus Foreign Anopheles gambiae Populations. PLoS ONE, 2012, 7, e30849.                                                                                              | 2.5 | 44        |
| 54 | Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis. Malaria Journal, 2011, 10, 269.                                                                        | 2.3 | 30        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Infection Intensity-Dependent Responses of Anopheles gambiae to the African Malaria Parasite<br>Plasmodium falciparum. Infection and Immunity, 2011, 79, 4708-4715.                                                                                                  | 2.2 | 51        |
| 56 | Chromosomal Inversions, Natural Selection and Adaptation in the Malaria Vector Anopheles funestus.<br>Molecular Biology and Evolution, 2011, 28, 745-758.                                                                                                            | 8.9 | 62        |
| 57 | Evolutionary forces on Anopheles: what makes a malaria vector?. Trends in Parasitology, 2010, 26, 130-136.                                                                                                                                                           | 3.3 | 149       |
| 58 | Low linkage disequilibrium in wild Anopheles gambiae s.l. populations. BMC Genetics, 2010, 11, 81.                                                                                                                                                                   | 2.7 | 18        |
| 59 | Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum. PLoS Pathogens, 2010, 6, e1001112.                                                                                                                      | 4.7 | 92        |
| 60 | Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa. Malaria<br>Journal, 2010, 9, 161.                                                                                                                                           | 2.3 | 34        |
| 61 | SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system. BMC Genomics, 2008, 9, 227.                                                                                                                               | 2.8 | 44        |
| 62 | Conserved Mosquito/Parasite Interactions Affect Development of Plasmodium falciparum in Africa.<br>PLoS Pathogens, 2008, 4, e1000069.                                                                                                                                | 4.7 | 93        |
| 63 | <i>Anopheles funestus</i> (Diptera: Culicidae) in a Humid Savannah Area of Western Burkina Faso:<br>Bionomics, Insecticide Resistance Status, and Role in Malaria Transmission. Journal of Medical<br>Entomology, 2007, 44, 990-997.                                 | 1.8 | 38        |
| 64 | Active dispersal by wild <i>Triatoma infestans</i> in the Bolivian Andes. Tropical Medicine and<br>International Health, 2007, 12, 759-764.                                                                                                                          | 2.3 | 44        |
| 65 | EFFECT OF INFECTION BY PLASMODIUM FALCIPARUM ON THE MELANIZATION IMMUNE RESPONSE OF ANOPHELES GAMBIAE. American Journal of Tropical Medicine and Hygiene, 2007, 76, 475-480.                                                                                         | 1.4 | 22        |
| 66 | Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles<br>gambiae. American Journal of Tropical Medicine and Hygiene, 2007, 76, 475-80.                                                                                       | 1.4 | 16        |
| 67 | Anopheles and Plasmodium : from laboratory models to natural systems in the field. EMBO Reports, 2006, 7, 1285-1289.                                                                                                                                                 | 4.5 | 118       |
| 68 | Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium<br>falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2006,<br>103, 16858-16863.                                              | 7.1 | 93        |
| 69 | MULTILOCUS ENZYME ELECTROPHORESIS SUPPORTS SPECIATION WITHIN THE ANOPHELES NILI GROUP OF MALARIA VECTORS IN CAMEROON. American Journal of Tropical Medicine and Hygiene, 2006, 75, 656-658.                                                                          | 1.4 | 11        |
| 70 | Multilocus enzyme electrophoresis supports speciation within the Anopheles nili group of malaria vectors in Cameroon. American Journal of Tropical Medicine and Hygiene, 2006, 75, 656-8.                                                                            | 1.4 | 10        |
| 71 | Gene Flow Between Chromosomal Forms of the Malaria Vector Anopheles funestus in Cameroon,<br>Central Africa, and Its Relevance in Malaria Fighting. Genetics, 2005, 169, 301-311.                                                                                    | 2.9 | 48        |
| 72 | Molecular Evidence of Speciation Between Island and Continental Populations<br>of <i>Anopheles</i> ( <i>Cellia</i> ) <i>sundaicus</i> (Diptera: Culicidae), a Principal Malaria Vector<br>Taxon in Southeast Asia. Journal of Medical Entomology, 2004, 41, 287-295. | 1.8 | 37        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | High Malaria Transmission Intensity Due to <i>Anopheles funestus</i> (Diptera: Culicidae) in a Village<br>of Savannah–Forest Transition Area in Cameroon. Journal of Medical Entomology, 2004, 41, 901-905.         | 1.8 | 68        |
| 74 | A Microsatellite Map of the African Human Malaria Vector Anopheles funestus. , 2004, 95, 29-34.                                                                                                                     |     | 60        |
| 75 | Population structure of the malaria vector Anopheles funestus in Senegal based on microsatellite and cytogenetic data. Insect Molecular Biology, 2004, 13, 251-258.                                                 | 2.0 | 41        |
| 76 | INTRASPECIFIC NUCLEOTIDE VARIATION IN ANOPHELES GAMBIAE: NEW INSIGHTS INTO THE BIOLOGY OF MALARIA VECTORS. American Journal of Tropical Medicine and Hygiene, 2004, 71, 795-802.                                    | 1.4 | 76        |
| 77 | Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors. American Journal of Tropical Medicine and Hygiene, 2004, 71, 795-802.                                    | 1.4 | 54        |
| 78 | SPECIES IDENTIFICATION WITHIN THE ANOPHELES FUNESTUS GROUP OF MALARIA VECTORS IN CAMEROON AND EVIDENCE FOR A NEW SPECIES. American Journal of Tropical Medicine and Hygiene, 2003, 69, 200-205.                     | 1.4 | 155       |
| 79 | Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. American Journal of Tropical Medicine and Hygiene, 2003, 69, 200-5.                       | 1.4 | 89        |
| 80 | Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles<br>funestus. Molecular Ecology Notes, 2002, 2, 498-500.                                                                | 1.7 | 24        |
| 81 | Morphological variability in the malaria vector, Anopheles moucheti, is not indicative of speciation:<br>evidences from sympatric south Cameroon populations. Infection, Genetics and Evolution, 2002, 2,<br>69-72. | 2.3 | 13        |
| 82 | Field evidence for manipulation of mosquito host selection by the human malaria parasite,                                                                                                                           |     | 6         |

82 Plasmodium falciparum., 0, 1, .