
Christophe Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/329370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	7.1	717
2	Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLoS Biology, 2006, 4, e226.	5.6	693
3	Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13324-13329.	7.1	565
4	Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 2007, 12, 224-230.	8.8	418
5	Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8066-8070.	7.1	368
6	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	7.3	305
7	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	7.1	292
8	GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus <i>Gigaspora rosea</i> by Boosting Its Energy Metabolism Â. Plant Physiology, 2008, 148, 402-413.	4.8	243
9	High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont <i>Rhizophagus irregularis</i> . New Phytologist, 2018, 220, 1161-1171.	7.3	206
10	Root Factors Induce Mitochondrial-Related Gene Expression and Fungal Respiration during the Developmental Switch from Asymbiosis to Presymbiosis in the Arbuscular Mycorrhizal FungusGigaspora rosea Â. Plant Physiology, 2003, 131, 1468-1478.	4.8	165
11	The microRNA miR171h modulates arbuscular mycorrhizal colonization of <i>Medicago truncatula</i> by targeting <i>NSP2</i> . Plant Journal, 2012, 72, 512-522.	5.7	163
12	Comparative genomics of <i>Rhizophagus irregularis</i> , <i> R.Âcerebriforme</i> , <i> R.Âdiaphanus</i> and <i>Gigaspora rosea</i> highlights specific genetic features in Glomeromycotina. New Phytologist, 2019, 222, 1584-1598.	7.3	133
13	A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Frontiers in Microbiology, 2016, 7, 233.	3.5	113
14	The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. Frontiers in Plant Science, 2017, 8, 124.	3.6	100
15	Enzyme sensors for the detection of pesticides. Biosensors and Bioelectronics, 1993, 8, 273-280.	10.1	90
16	The small RNA diversity from Medicago truncatularoots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biology, 2014, 15, 457.	8.8	78
17	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	9.3	72
18	Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida. BMC Genomics, 2017, 18, 589.	2.8	72

CHRISTOPHE ROUX

#	Article	IF	CITATIONS
19	Comparative analysis of mitochondrial genomes of Rhizophagus irregularis – syn. Glomus irregulare – reveals a polymorphism induced by variability generating elements. New Phytologist, 2012, 196, 1217-1227.	7.3	66
20	Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of <i>Rhizophagus irregularis</i> and <i>Gigaspora margarita</i> is high and isolateâ€dependent. Molecular Ecology, 2016, 25, 2816-2832.	3.9	64
21	Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiology Letters, 1999, 180, 147-155.	1.8	60
22	Partner communication in the arbuscular mycorrhizal interaction. Canadian Journal of Botany, 2004, 82, 1186-1197.	1.1	60
23	Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytologist, 2017, 213, 531-536.	7.3	53
24	Combining Metabolomics and Gene Expression Analysis Reveals that Propionyl- and Butyryl-Carnitines Are Involved in Late Stages of Arbuscular Mycorrhizal Symbiosis. Molecular Plant, 2014, 7, 554-566.	8.3	47
25	The biological cycle of <i>Sporisorium reilianum</i> f.sp. <i>zeae</i> : an overview using microscopy. Mycologia, 2002, 94, 505-514.	1.9	41
26	The Identification of Phytohormone Receptor Homologs in Early Diverging Fungi Suggests a Role for Plant Sensing in Land Colonization by Fungi. MBio, 2017, 8, .	4.1	41
27	Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytologist, 2018, 220, 1129-1134.	7.3	41
28	Biotrophic Development of Sporisorium reilianum f. sp. zeae in Vegetative Shoot Apex of Maize. Phytopathology, 1999, 89, 247-253.	2.2	35
29	Strigolactones. Plant Signaling and Behavior, 2007, 2, 163-164.	2.4	34
30	Molecular Tools for the Identification ofTubermelanosporumin Agroindustry. Journal of Agricultural and Food Chemistry, 2000, 48, 2608-2613.	5.2	32
31	Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signaling and Behavior, 2009, 4, 75-77.	2.4	32
32	Identification of new signalling peptides through a genome-wide survey of 250 fungal secretomes. BMC Genomics, 2019, 20, 64.	2.8	31
33	The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Current Biology, 2021, 31, 1570-1577.e4.	3.9	30
34	Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. Trends in Plant Science, 2021, 26, 111-123.	8.8	25
35	Imbalanced Regulation of Fungal Nutrient Transports According to Phosphate Availability in a Symbiocosm Formed by Poplar, Sorghum, and Rhizophagus irregularis. Frontiers in Plant Science, 2019, 10, 1617.	3.6	23
36	The Biological Cycle of Sporisorium reilianum f.sp. zeae: An Overview Using Microscopy. Mycologia, 2002, 94, 505.	1.9	18

CHRISTOPHE ROUX

#	Article	IF	CITATIONS
37	Phylogenetic relationships among smut fungi parasitizing dicotyledons based on ITS sequence analysis. Mycological Research, 2002, 106, 541-548.	2.5	17
38	Early infection of maize roots bySporisorium reilianum f. sp.zeae. Protoplasma, 2000, 213, 83-92.	2.1	16
39	Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biology, 2015, 119, 145-153.	2.5	15
40	Development of bio-based earth products for healthy and sustainable buildings: characterization of microbiological, mechanical and hygrothermal properties. Materiaux Et Techniques, 2015, 103, 206.	0.9	15
41	Laboratory test to assess sensitivity of bio-based earth materials to fungal growth. Building and Environment, 2018, 142, 11-21.	6.9	14
42	Deciphering the phylogeny of violets based on multiplexed genetic and metabolomic approaches. Phytochemistry, 2019, 163, 99-110.	2.9	14
43	Genomics of Arbuscular Mycorrhizal Fungi. Advances in Botanical Research, 2014, 70, 259-290.	1.1	13
44	In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Scientific Reports, 2019, 9, 20373.	3.3	13
45	Opportunities and risks of biofertilization for leek production in urban areas: Influence on both fungal diversity and human bioaccessibility of inorganic pollutants. Science of the Total Environment, 2018, 624, 1140-1151.	8.0	12
46	Title is missing!. Plant and Soil, 2001, 236, 145-153.	3.7	10
47	Hydroxyproline-containing fragments in the cell wall of Phytophthora parasitica. Phytochemistry, 1994, 35, 591-595.	2.9	9
48	Title is missing!. Plant and Soil, 2003, 251, 65-71.	3.7	7
49	The life cycle of the smut fungus Moesziomyces penicillariae isÂadapted to the short-cycle of the host, Pennisetum glaucum. Fungal Biology, 2013, 117, 311-318.	2.5	7
50	Safeners as Corn Seedling Protectants against Acetolactate Synthase Inhibitors. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1991, 46, 945-949.	1.4	5
51	Solopathogenic strain formation strongly differs amongUstilaginaceaespecies. FEMS Microbiology Letters, 2010, 305, 121-127.	1.8	5
52	Regulation of mating genes during arbuscular mycorrhizal isolate co-existence—where is the evidence?. ISME Journal, 2021, 15, 2173-2179.	9.8	4
53	Characterization of the microbiome associated with in situ earthen materials. Environmental Microbiomes, 2020, 15, 4.	5.0	2
54	Phylogenetic relationships between European and Chinese truffles based on parsimony and distance analysis of ITS sequences. FEMS Microbiology Letters, 1999, 180, 147-155.	1.8	1

#	Article	IF	CITATIONS
55	Safeners as Corn Seedling Protectants against Acetolactate Synthase Inhibitors. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1991, 46, 945-949.	1.4	0