
Catherine Postic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3293659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target. Gut, 2022, 71, 807-821.	12.1	26
2	Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Molecular Metabolism, 2022, 57, 101438.	6.5	16
3	ChREBPÎ ² is dispensable for the control of glucose homeostasis and energy balance. JCI Insight, 2022, 7, .	5.0	4
4	Nuclear HMGB1 protects from nonalcoholic fatty liver disease through negative regulation of liver X receptor. Science Advances, 2022, 8, eabg9055.	10.3	7
5	The absence of hepatic glucose-6 phosphatase/ChREBP couple is incompatible with survival in mice. Molecular Metabolism, 2021, 43, 101108.	6.5	14
6	Dual regulation of TxNIP by ChREBP and FoxO1 in liver. IScience, 2021, 24, 102218.	4.1	10
7	New targets for NAFLD. JHEP Reports, 2021, 3, 100346.	4.9	79
8	Conversion of a dietary fructose: new clues from the gut microbiome. Nature Metabolism, 2020, 2, 217-218.	11.9	4
9	Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine. Scientific Reports, 2020, 10, 5186.	3.3	17
10	Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Scientific Reports, 2020, 10, 6489.	3.3	80
11	O-GlcNacylation Links TxNIP to Inflammasome Activation in Pancreatic Î ² Cells. Frontiers in Endocrinology, 2019, 10, 291.	3.5	16
12	Carbohydrate Sensing Through the Transcription Factor ChREBP. Frontiers in Genetics, 2019, 10, 472.	2.3	114
13	Adipocyte Glucocorticoid Receptor Deficiency Promotes Adipose Tissue Expandability and Improves the Metabolic Profile Under Corticosterone Exposure. Diabetes, 2019, 68, 305-317.	0.6	35
14	Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nature Metabolism, 2019, 1, 133-146.	11.9	42
15	MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic β-Cells. Diabetes, 2018, 67, 461-472.	0.6	36
16	Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling. Gut, 2018, 67, 2192-2203.	12.1	17
17	A new pathway to eSCAPe lipotoxicity. Clinics and Research in Hepatology and Gastroenterology, 2018, 42, 3-5.	1.5	2
18	Insights into the role of hepatocyte PPARα activity in response to fasting. Molecular and Cellular Endocrinology, 2018, 471, 75-88.	3.2	40

#	Article	IF	CITATIONS
19	The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nature Communications, 2018, 9, 2092.	12.8	63
20	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	30.7	465
21	MondoA/ChREBP: The usual suspects of transcriptional glucose sensing; Implication in pathophysiology. Metabolism: Clinical and Experimental, 2017, 70, 133-151.	3.4	44
22	Growth factor receptor binding protein 14 inhibition triggers insulinâ€induced mouse hepatocyte proliferation and is associated with hepatocellular carcinoma. Hepatology, 2017, 65, 1352-1368.	7.3	17
23	A Specific ChREBP and PPARÎ \pm Cross-Talk Is Required for the Glucose-Mediated FGF21 Response. Cell Reports, 2017, 21, 403-416.	6.4	99
24	Sweet Sixteenth for ChREBP: Established Roles and Future Goals. Cell Metabolism, 2017, 26, 324-341.	16.2	165
25	Dietary oleic acid regulates hepatic lipogenesis through a liver X receptor-dependent signaling. PLoS ONE, 2017, 12, e0181393.	2.5	47
26	Therapeutic potential of nicotinamide adenine dinucleotide for nonalcoholic fatty liver disease. Hepatology, 2016, 63, 1074-1077.	7.3	8
27	Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut, 2016, 65, 1202-1214.	12.1	494
28	Matrix metalloproteinase 11 protects from diabesity and promotes metabolic switch. Scientific Reports, 2016, 6, 25140.	3.3	22
29	Emerging role of miR-21 in non-alcoholic fatty liver disease. Gut, 2016, 65, 1781-1783.	12.1	25
30	Novel Grb14-Mediated Cross Talk between Insulin and p62/Nrf2 Pathways Regulates Liver Lipogenesis and Selective Insulin Resistance. Molecular and Cellular Biology, 2016, 36, 2168-2181.	2.3	18
31	Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth. Oncogene, 2016, 35, 2602-2614.	5.9	38
32	Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia, 2015, 58, 1699-1703.	6.3	83
33	Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology, 2015, 62, 1086-1100.	7.3	51
34	Integration of ChREBP-Mediated Glucose Sensing into Whole Body Metabolism. Physiology, 2015, 30, 428-437.	3.1	41
35	Gastric bypass surgery in NASH: a major modulator of hepatic mitochondrial dysfunction. Gut, 2015, 64, 524-526.	12.1	1
36	O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Frontiers in Endocrinology, 2014, 5, 230.	3.5	28

#	Article	IF	CITATIONS
37	Essential fatty acids deficiency promotes lipogenic gene expression and hepatic steatosis through the liver X receptor. Journal of Hepatology, 2013, 58, 984-992.	3.7	41
38	Novel insights into ChREBP regulation and function. Trends in Endocrinology and Metabolism, 2013, 24, 257-268.	7.1	164
39	Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Molecular and Cellular Biology, 2013, 33, 2202-2211.	2.3	110
40	Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. Journal of Hepatology, 2012, 56, 199-209.	3.7	134
41	Hidden Variant of ChREBP in Fat Links Lipogenesis to Insulin Sensitivity. Cell Metabolism, 2012, 15, 795-797.	16.2	6
42	The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. Journal of Clinical Investigation, 2012, 122, 2176-2194.	8.2	319
43	LRH-1–dependent glucose sensing determines intermediary metabolism in liver. Journal of Clinical Investigation, 2012, 122, 2817-2826.	8.2	94
44	Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 995-1006.	3.8	70
45	Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. Journal of Hepatology, 2011, 55, 145-153.	3.7	116
46	<i>O</i> -GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver. Diabetes, 2011, 60, 1399-1413.	0.6	180
47	<i>Little caves ameliorate hepatic insulin signaling</i> . Focus on "Caveolin gene transfer improves glucose metabolism in diabetic miceâ€: American Journal of Physiology - Cell Physiology, 2010, 298, C442-C445.	4.6	2
48	Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. Journal of Clinical Investigation, 2010, 120, 4316-4331.	8.2	245
49	Calpain activation is required for homocysteine-mediated hepatic degradation of inhibitor Ikappa B alpha. Molecular Genetics and Metabolism, 2009, 97, 114-120.	1.1	15
50	Regulation of glucose sensing in liver: a role for the transcription factor ChREBP. Chemistry and Physics of Lipids, 2008, 154, S17.	3.2	0
51	Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Letters, 2008, 582, 68-73.	2.8	113
52	The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes and Metabolism, 2008, 34, 643-648.	2.9	234
53	Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. Journal of Clinical Investigation, 2008, 118, 829-838.	8.2	984
54	The Transcription Factor COUP-TFII Is Negatively Regulated by Insulin and Glucose via Foxo1- and ChREBP-Controlled Pathways. Molecular and Cellular Biology, 2008, 28, 6568-6579.	2.3	35

#	Article	IF	CITATIONS
55	Carbohydrate responsive element binding protein and lipid homeostasis. Current Opinion in Lipidology, 2008, 19, 301-306.	2.7	25
56	ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. Journal of Clinical Investigation, 2008, 118, 956-64.	8.2	158
57	ChREBP, a Transcriptional Regulator of Glucose and Lipid Metabolism. Annual Review of Nutrition, 2007, 27, 179-192.	10.1	223
58	Transcriptional Regulation of Hepatic Genes by Insulin and Glucose. , 2006, , 106-116.		0
59	Hepatic Gene Regulation by Glucose and Polyunsaturated Fatty Acids: A Role for ChREBP. Journal of Nutrition, 2006, 136, 1145-1149.	2.9	71
60	Liver-Specific Inhibition of ChREBP Improves Hepatic Steatosis and Insulin Resistance in <i>ob/ob</i> Mice. Diabetes, 2006, 55, 2159-2170.	0.6	387
61	Overexpression of β2-adrenergic receptors in mouse liver alters the expression of gluconeogenic and glycolytic enzymes. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E715-E722.	3.5	28
62	Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie, 2005, 87, 81-86.	2.6	292
63	Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. Journal of Clinical Investigation, 2005, 115, 2843-2854.	8.2	256
64	Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation, 2005, 115, 3554-3563.	8.2	263
65	Cellular and Molecular Mechanisms of Adipose Tissue Plasticity in Muscle Insulin Receptor Knockout Mice. Endocrinology, 2004, 145, 1926-1932.	2.8	43
66	Hepatic Glucokinase Is Required for the Synergistic Action of ChREBP and SREBP-1c on Glycolytic and Lipogenic Gene Expression. Journal of Biological Chemistry, 2004, 279, 20314-20326.	3.4	376
67	Mouse models of insulin resistance and type 2 diabetes. Annales D'Endocrinologie, 2004, 65, 51-59.	1.4	6
68	Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes and Metabolism, 2004, 30, 398-408.	2.9	359
69	Glucokinase Gene Locus Transgenic Mice Are Resistant to the Development of Obesity-Induced Type 2 Diabetes. Diabetes, 2001, 50, 622-629.	0.6	61
70	Cell-specific Roles of Glucokinase in Glucose Homeostasis. Endocrine Reviews, 2001, 56, 195-218.	6.7	143
71	Use of a Cre/Loxp Strategy in Mice to Determine the Cell-Specific Roles of Glucokinase in Mody-2. Growth Hormone, 2001, , 351-362.	0.2	0
72	Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis, 2000, 26, 139-142.	1.6	163

#	Article	IF	CITATIONS
73	DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis, 2000, 26, 149-150.	1.6	339
74	Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism. Molecular and Cellular Biology, 2000, 20, 6508-6517.	2.3	213
75	Hepatocyte-Specific Mutation Establishes Retinoid X Receptor \hat{I}_{\pm} as a Heterodimeric Integrator of Multiple Physiological Processes in the Liver. Molecular and Cellular Biology, 2000, 20, 4436-4444.	2.3	227
76	Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction. Molecular Cell, 2000, 6, 87-97.	9.7	1,077
77	Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. , 2000, 26, 139.		2
78	Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism. Molecular and Cellular Biology, 2000, 20, 6508-6517.	2.3	19
79	Adenovirus-mediated Knockout of a Conditional Glucokinase Gene in Isolated Pancreatic Islets Reveals an Essential Role for Proximal Metabolic Coupling Events in Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 1999, 274, 1000-1004.	3.4	65
80	Isolation and characterization of the mouse cytosolic phosphoenolpyruvate carboxykinase (GTP) gene: evidence for tissue-specific hypersensitive sites. Molecular and Cellular Endocrinology, 1999, 148, 67-77.	3.2	13
81	Tissue-Specific Knockout of the Insulin Receptor in Pancreatic β Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes. Cell, 1999, 96, 329-339.	28.9	1,093
82	Dual Roles for Glucokinase in Glucose Homeostasis as Determined by Liver and Pancreatic β Cell-specific Gene Knock-outs Using Cre Recombinase. Journal of Biological Chemistry, 1999, 274, 305-315.	3.4	1,177
83	Effects of Increased Glucokinase Gene Copy Number on Glucose Homeostasis and Hepatic Glucose Metabolism. Journal of Biological Chemistry, 1997, 272, 22570-22575.	3.4	136
84	Effects of altered glucokinase gene copy number on blood glucose homoeostasis. Biochemical Society Transactions, 1997, 25, 113-117.	3.4	18
85	Cell-specific Expression and Regulation of a Glucokinase Gene Locus Transgene. Journal of Biological Chemistry, 1997, 272, 22564-22569.	3.4	50
86	Variable Expression of Hepatic Glucokinase in Mice Is Due to a Regulational Locus That Cosegregates with the Glucokinase Gene. Genomics, 1997, 45, 185-193.	2.9	4
87	Cloning and Characterization of the Mouse Clucokinase Gene Locus and Identification of Distal Liver-Specific DNase I Hypersensitive Sites. Genomics, 1995, 29, 740-750.	2.9	34
88	Influence of the weaning diet on the changes of glucose metabolism and of insulin sensitivity. Proceedings of the Nutrition Society, 1993, 52, 325-333.	1.0	9
89	The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes, 1993, 42, 922-929.	0.6	14
90	Adaptations of glucose metabolism in white-fat adipocytes at weaning in the rat are concomitant with specific gene expression. Biochemical Society Transactions, 1990, 18, 857-858.	3.4	3