
Haitao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3293478/publications.pdf Version: 2024-02-01

Ηλιτλο ΥλΝΟ

#	Article	IF	CITATIONS
1	Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein and Cell, 2022, 13, 689-693.	11.0	136
2	The Structure of the Porcine Deltacoronavirus Main Protease Reveals a Conserved Target for the Design of Antivirals. Viruses, 2022, 14, 486.	3.3	3
3	Crystal Structures of Wolbachia CidA and CidB Reveal Determinants of Bacteria-induced Cytoplasmic Incompatibility and Rescue. Nature Communications, 2022, 13, 1608.	12.8	15
4	Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117142119.	7.1	64
5	Structural Basis of Zika Virus Helicase in RNA Unwinding and ATP Hydrolysis. ACS Infectious Diseases, 2022, 8, 150-158.	3.8	0
6	Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Reports, 2022, 39, 110770.	6.4	47
7	The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochemical and Biophysical Research Communications, 2021, 538, 63-71.	2.1	30
8	Antivirals with common targets against highly pathogenic viruses. Cell, 2021, 184, 1604-1620.	28.9	78
9	Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
10	High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein and Cell, 2021, 12, 877-888.	11.0	95
11	Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 2021, 12, 3061.	12.8	149
12	Identification of proteasome and caspase inhibitors targeting SARS-CoV-2 Mpro. Signal Transduction and Targeted Therapy, 2021, 6, 214.	17.1	17
13	An ultra-red fluorescent biosensor for highly sensitive and rapid detection of biliverdin. Analytica Chimica Acta, 2021, 1174, 338709.	5.4	3
14	Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 2021, 19, 685-700.	28.6	259
15	Mass spectrometry reveals potential of β-lactams as SARS-CoV-2 M ^{pro} inhibitors. Chemical Communications, 2021, 57, 1430-1433.	4.1	35
16	Structural and mechanistic insights into the complexes formed by <i>Wolbachia</i> cytoplasmic incompatibility factors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
17	Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nature Communications, 2021, 12, 6304.	12.8	42
18	Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1–Nup98 Complex to Compete With mRNA Nuclear Export. Frontiers in Molecular Biosciences, 2021, 8, 813248.	3.5	26

Ηαιτάο Υάνς

#	Article	IF	CITATIONS
19	Conformational Changes in a Macrolide Antibiotic Binding Protein From Mycobacterium smegmatis Upon ADP Binding. Frontiers in Microbiology, 2021, 12, 780954.	3.5	0
20	Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 2020, 709, 136138.	8.0	103
21	Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Science Advances, 2020, 6, .	10.3	19
22	Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Science Advances, 2020, 6, .	10.3	44
23	Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Frontiers in Molecular Biosciences, 2020, 7, 616341.	3.5	83
24	Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2. Protein and Cell, 2020, 11, 505-517.	11.0	13
25	Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural and Molecular Biology, 2020, 27, 529-532.	8.2	339
26	Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582, 289-293.	27.8	3,133
27	A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Advanced Healthcare Materials, 2020, 9, e2000364.	7.6	9
28	Crystal structure of the NS3 helicase of tick-borne encephalitis virus. Biochemical and Biophysical Research Communications, 2020, 528, 601-606.	2.1	4
29	Structures of <i>Mycobacterium tuberculosis</i> Penicillin-Binding Protein 3 in Complex with Five <i>β</i> -Lactam Antibiotics Reveal Mechanism of Inactivation. Molecular Pharmacology, 2020, 97, 287-294.	2.3	20
30	Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Journal of Colloid and Interface Science, 2020, 573, 384-395.	9.4	2
31	Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368, 779-782.	12.6	1,228
32	Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science, 2020, 368, 1211-1219.	12.6	82
33	Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368, 1331-1335.	12.6	1,135
34	Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182, 417-428.e13.	28.9	672
35	Crystal structure and biochemical study on argininosuccinate lyase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2019, 510, 116-121.	2.1	1
36	Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell, 2019, 176, 636-648.e13.	28.9	172

HAITAO YANG

#	Article	IF	CITATIONS
37	The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor. Biochemical and Biophysical Research Communications, 2019, 511, 794-799.	2.1	25
38	Structural characterization of the HCoV-229E fusion core. Biochemical and Biophysical Research Communications, 2018, 497, 705-712.	2.1	8
39	Structural insight into the Zika virus capsid encapsulating the viral genome. Cell Research, 2018, 28, 497-499.	12.0	26
40	Crystal structure of the apurinic/apyrimidinic endonuclease IV from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2018, 498, 111-118.	2.1	7
41	Effective Bioactivity Retention of Low-Concentration Antibodies on HFBI-Modified Fluorescence ICTS for Sensitive and Rapid Detection of PSA. ACS Applied Materials & amp; Interfaces, 2018, 10, 14549-14558.	8.0	29
42	Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target. Protein and Cell, 2018, 9, 971-975.	11.0	6
43	Mechanism of ATP hydrolysis by the Zika virus helicase. FASEB Journal, 2018, 32, 5250-5257.	0.5	20
44	Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics, 2018, 8, 3111-3125.	10.0	17
45	A Mutation Identified in Neonatal Microcephaly Destabilizes Zika Virus NS1 Assembly in Vitro. Scientific Reports, 2017, 7, 42580.	3.3	28
46	Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9. Protein Science, 2017, 26, 1037-1048.	7.6	35
47	Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nanoâ€Electromechanical Device. Small, 2017, 13, 1602962.	10.0	53
48	Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. European Journal of Medicinal Chemistry, 2017, 137, 450-461.	5.5	75
49	Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discovery, 2017, 3, 17006.	6.7	166
50	Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus. Journal of Medicinal Chemistry, 2017, 60, 3212-3216.	6.4	24
51	Structural Insight into the Activation of Pknl Kinase from M.Âtuberculosis via Dimerization of the Extracellular Sensor Domain. Structure, 2017, 25, 1286-1294.e4.	3.3	5
52	The conformational changes of Zika virus methyltransferase upon converting SAM to SAH. Oncotarget, 2017, 8, 14830-14834.	1.8	24
53	Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 2016, 6, 23061.	3.3	14
54	Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virologica Sinica, 2016, 31, 24-30.	3.0	43

Haitao Yang

#	Article	IF	CITATIONS
55	The crystal structure of Zika virus helicase: basis for antiviral drug design. Protein and Cell, 2016, 7, 450-454.	11.0	72
56	Structural basis of Zika virus helicase in recognizing its substrates. Protein and Cell, 2016, 7, 562-570.	11.0	72
57	Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Research, 2016, 26, 1260-1263.	12.0	71
58	Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Scientific Reports, 2016, 6, 22677.	3.3	145
59	Crystal Structure of Feline Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors. Journal of Virology, 2016, 90, 1910-1917.	3.4	29
60	Mechanism of Dephosphorylation of Glucosyl-3-phosphoglycerate by a Histidine Phosphatase. Journal of Biological Chemistry, 2014, 289, 21242-21251.	3.4	9
61	Crystallization and preliminary crystallographic study ofPorcine epidemic diarrhea virusmain protease in complex with an inhibitor. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1608-1611.	0.8	0
62	Crystallization and preliminary crystallographic study ofFeline infectious peritonitis virusmain protease in complex with an inhibitor. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1612-1615.	0.8	1
63	Crystallization and preliminary crystallographic study of human coronavirus NL63 main protease in complex with an inhibitor. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1068-1071.	0.8	2
64	Expression, crystallization and preliminary crystallographic study of the functional mutant (N60K) of nonstructural protein 9 fromHuman coronavirus HKU1. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1620-1623.	0.8	0
65	Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. Journal of Virology, 2008, 82, 2515-2527.	3.4	388
66	Production of Authentic SARS-CoV Mpro with Enhanced Activity: Application as a Novel Tag-cleavage Endopeptidase for Protein Overproduction. Journal of Molecular Biology, 2007, 366, 965-975.	4.2	221
67	Drug Design Targeting the Main Protease, the Achilles Heel of Coronaviruses. Current Pharmaceutical Design, 2006, 12, 4573-4590.	1.9	145
68	Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases. PLoS Biology, 2005, 3, e324.	5.6	547
69	The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13190-13195.	7.1	879