
Michiel Van Bel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PLAZA 5.0: extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Research, 2022, 50, D1468-D1474.	14.5	95
2	Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics, 2022, 23, .	2.8	17
3	The Arabidopsis condensin CAPâ€D subunits arrange interphase chromatin. New Phytologist, 2021, 230, 972-987.	7.3	9
4	Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nature Plants, 2021, 7, 500-513.	9.3	43
5	TRAPID 2.0: a web application for taxonomic and functional analysis of <i>de novo</i> transcriptomes. Nucleic Acids Research, 2021, 49, e101-e101.	14.5	21
6	Comment on â€~Hayai-Annotation Plants: an ultrafast and comprehensive functional gene annotation system in plants': the importance of taking the GO graph structure into account. Bioinformatics, 2021, 36, 5558-5560.	4.1	2
7	Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. Plant Biotechnology Journal, 2020, 18, 553-567.	8.3	24
8	Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2551-2559.	7.1	85
9	Plant-RRBS: DNA Methylome Profiling Adjusted to Plant Genomes, Utilizing Efficient Endonuclease Combinations, for Multi-Sample Studies. Methods in Molecular Biology, 2020, 2093, 65-80.	0.9	0
10	Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nature Plants, 2019, 5, 316-327.	9.3	205
11	Gene space completeness in complex plant genomes. Current Opinion in Plant Biology, 2019, 48, 9-17.	7.1	16
12	PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Research, 2018, 46, D1190-D1196.	14.5	460
13	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	5.7	406
14	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134
15	Exploring Plant Co-Expression and Gene-Gene Interactions with CORNET 3.0. Methods in Molecular Biology, 2017, 1533, 201-212.	0.9	11
16	Reciprocally Retained Genes in the Angiosperm Lineage Show the Hallmarks of Dosage Balance Sensitivity. Plant Cell, 2017, 29, 2766-2785.	6.6	81
17	Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions. BMC Plant Biology, 2017, 17, 115.	3.6	13
18	PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics, 2017, 33, 2946-2947.	4.1	142

MICHIEL VAN BEL

#	Article	IF	CITATIONS
19	A Collection of Conserved Noncoding Sequences to Study Gene Regulation in Flowering Plants. Plant Physiology, 2016, 171, 2586-2598.	4.8	39
20	Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. Journal of Proteome Research, 2016, 15, 4304-4317.	3.7	50
21	PP2A-3 interacts with ACR4 and regulates formative cell division in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1447-1452.	7.1	43
22	lt's Time for Some "Site―Seeing: Novel Tools to Monitor the Ubiquitin Landscape in <i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 6-16.	6.6	84
23	BLSSpeller: exhaustive comparative discovery of conserved <i>cis</i> -regulatory elements. Bioinformatics, 2015, 31, 3758-3766.	4.1	14
24	PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 2015, 43, D974-D981.	14.5	329
25	Dynamic Changes in ANGUSTIFOLIA3 Complex Composition Reveal a Growth Regulatory Mechanism in the Maize Leaf. Plant Cell, 2015, 27, 1605-1619.	6.6	154
26	A conserved core of PCD indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology, 2015, 169, pp.00769.2015.	4.8	141
27	Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways. PLoS ONE, 2014, 9, e114744.	2.5	187
28	TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biology, 2013, 14, R134.	9.6	108
29	picoâ€ <scp>PLAZA</scp> , a genome database of microbial photosynthetic eukaryotes. Environmental Microbiology, 2013, 15, 2147-2153.	3.8	87
30	Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform Â. Plant Physiology, 2012, 158, 590-600.	4.8	238
31	Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 2012, 13, R74.	9.6	143
32	PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants. Plant Cell, 2010, 21, 3718-3731.	6.6	243
33	FunSiP: a modular and extensible classifier for the prediction of functional sites in DNA. Bioinformatics, 2008, 24, 1532-1533.	4.1	Ο