List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hysteresis loss reduction in self-bias FeSi/SrFe ₁₂ O ₁₉ soft magnetic composites. Chinese Physics B, 2022, 31, 027503.	1.4	3
2	Effect of magnetic properties in FeSi soft magnetic composites by low melting glass powder as adhesive and insulating agent. Journal of Materials Science: Materials in Electronics, 2022, 33, 782.	2.2	4
3	Soft magnetic properties in Fe deficiency Ti–Co-doped M-type barium hexagonal ferrites. Journal of Materials Science: Materials in Electronics, 2022, 33, 1830.	2.2	2
4	Evolution of magnetic loss with annealing temperature in FeSiAl/carbonyl iron soft magnetic composite. Materials Technology, 2022, 37, 2313-2317.	3.0	5
5	Synthesis and Analysis of Zn-Substituted CoCr2O4 Spinel Oxide. Journal of Superconductivity and Novel Magnetism, 2022, 35, 753-762.	1.8	5
6	FeNi/Glass Soft Magnetic Composites with High Magnetic Properties. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1165-1172.	1.8	7
7	Soft Magnetic Properties of FeSiCr Cores in a Transverse Magnetic Field. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1215-1220.	1.8	4
8	Magnetic permeability stability of composite material with nominal composition Ni0.6Fe2.4O4. Journal of Magnetism and Magnetic Materials, 2022, 553, 169179.	2.3	2
9	Spin-glass evolution behavior in spinel compounds Co2-Zn SnO4 (0 ≤ ≤1). Journal of Alloys and Compounds, 2021, 852, 156962.	5.5	12
10	Magnetic Properties of FeSiAl Soft Magnetic Composites under Transverse Magnetic Field. Journal of Superconductivity and Novel Magnetism, 2021, 34, 883-887.	1.8	11
11	Discovery of the Griffiths phase in the quaternary nitrides Ge 1â^' x Sn x NFe 3. Journal of the American Ceramic Society, 2021, 104, 3387-3396.	3.8	0
12	Temperature stability of magnetic permeability of NixFe3â^'xO4 ferrites. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
13	Morphology and magnetic properties of NiFe ₂ O ₄ powders prepared in molten sodium chloride. Materialwissenschaft Und Werkstofftechnik, 2021, 52, 677-681.	0.9	0
14	Spin glass behavior and negative magnetization in Co2Sn1â^'Ti O4 (0â‰ ¤ â‰ 0 .9). Journal of Alloys and Compounds, 2021, 867, 158960.	5.5	0
15	Investigation on magnetic properties of FeSiAl/SrFe12O19Âcomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 16956-16960.	2.2	7
16	Characterization of microstructure and magnetic properties for Fe ion-doped CoGa2O4. Journal of Materials Science: Materials in Electronics, 2021, 32, 24726.	2.2	0
17	An investigation of reentrant spin-glass behavior, magnetocaloric effect and critical behavior of MnCr2O4. Journal of Alloys and Compounds, 2021, 877, 160224.	5.5	14
18	Soft magnetic properties of FeSiAl/carbonyl iron composites with high magnetic permeability and low magnetic loss. Journal of Alloys and Compounds, 2021, 887, 161337.	5.5	24

#	Article	IF	CITATIONS
19	Synthesis, Magnetic and Electrical Characteristics of Baâ€&r Hexaferrites Substituted with Samarium, Chromium and Aluminum. ChemistrySelect, 2021, 6, 470-479.	1.5	8
20	Influence of the Eu substitution on the structure and magnetic properties of the Sr-hexaferrites. Ceramics International, 2020, 46, 171-179.	4.8	25
21	First-order magnetic transition induced by structural transition in hexagonal structure. Journal of Magnetism and Magnetic Materials, 2020, 494, 165821.	2.3	10
22	Characterizations analysis of magneto-structural transitions in Ce-Co doped SrM based nano Sr1â^'xCexFe12â^'xCoxO19 hexaferrite crystallites prepared by ceramic route. Journal of Magnetism and Magnetic Materials, 2020, 497, 166013.	2.3	23
23	The glass formation ability and soft magnetic properties of the Fe79Si9B4.5P1.5CuNb nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2020, 497, 165990.	2.3	4
24	Investigating the co-substitution impact of yttrium–nickel cations on lattice, morphological and magnetic parameters of SrM based ceramics. Ceramics International, 2020, 46, 8918-8927.	4.8	8
25	Effect of Co2Y additive on power loss of Ni0.8Zn0.2Fe2O4 ferrites. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	1
26	Effects of Pr-Al co-substitution on the magnetic and structural properties of M-type Ca-Sr hexaferrites. Chinese Journal of Physics, 2020, 63, 337-347.	3.9	16
27	Structure and magnetic performance of Gd substituted Sr-based hexaferrites. Journal of Alloys and Compounds, 2020, 820, 153180.	5.5	21
28	Exchange bias behavior on permanent magnet Nd–Fe–B. Journal of Materials Science: Materials in Electronics, 2020, 31, 20325-20331.	2.2	1
29	Characterization of microstructure and magnetic properties for Co2+ ions doped MgFe2O4 spinel ferrites. Materials Today Communications, 2020, 25, 101414.	1.9	10
30	Reduction of hysteresis loss in soft magnetic composites under transverse magnetic field. Applied Physics Letters, 2020, 117, .	3.3	22
31	Spin-Glass Behavior in Spinel Compound ZnCoTiO4. Journal of Superconductivity and Novel Magnetism, 2020, 33, 3745-3752.	1.8	2
32	Analysis of the Griffiths–like phase observed in binary ε-Fe2N nitride. Applied Physics Letters, 2020, 117, 122408.	3.3	2
33	Investigation of structural and magnetic properties of Cu-substituted NiZn spinel ferrites. Journal of Materials Science: Materials in Electronics, 2020, 31, 17133-17142.	2.2	8
34	Soft Magnetic Properties of Fe-6.5wt%Si/SrFe12O19 Composites. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2779-2785.	1.8	12
35	Spin-glass behavior in Co-based antiperovskite compound SnNCo3. Applied Physics Letters, 2020, 116, . 	3.3	10
36	Low melting glass as adhesive and insulating agent for soft magnetic composites: Case in FeSi powder core. Journal of Magnetism and Magnetic Materials, 2020, 501, 166480.	2.3	30

#	Article	IF	CITATIONS
37	Evolution of Structural Transformation in γ′-Fe ₄ N and GeNFe ₃ . Journal of Physical Chemistry C, 2020, 124, 6321-6327.	3.1	4
38	Synthesis, analysis and characterization of Co substituted NiZnTi spinel ferrite. Journal of Alloys and Compounds, 2020, 828, 154181.	5.5	13
39	Typical soft magnetic properties induced by La doped CoTi-SrM hexaferrites and advances in texture research. Journal of Alloys and Compounds, 2019, 803, 1090-1099.	5.5	8
40	Magnetic properties of indium doped Ni0.4Zn0.6InxFe2â^'xO4. Materials Research Express, 2019, 6, 116127.	1.6	3
41	Investigation on magnetic power loss in strontium doped Ba1-x Sr x Ti1.2Co1.2Fe9.6O19 hexaferrites. Materials Research Express, 2019, 6, 116102.	1.6	3
42	Investigations of Ce-Zn co-substitution on crystal structure and ferrimagnetic properties of M-type strontium hexaferrites Sr1-Ce Fe12-Zn O19 compounds. Journal of Alloys and Compounds, 2019, 785, 452-459.	5.5	39
43	Characterization of texture and magnetic properties of Ni0.5Zn0.5Ti Fe2â^'O4 spinel ferrites. Journal of Magnetism and Magnetic Materials, 2019, 489, 165411.	2.3	24
44	Effect of Cu on microstructure, magnetic properties of antiperovskite nitrides CuxNFe4â^'x. Journal of Materials Science: Materials in Electronics, 2019, 30, 10383-10390.	2.2	6
45	Fabrication and characterization of Zinc Telluride (ZnTe) thin films grown on glass substrates. Physica B: Condensed Matter, 2019, 560, 204-207.	2.7	13
46	The novel magnetic loss characteristics in La2NiMnO6 materials. Chinese Journal of Physics, 2019, 57, 78-81.	3.9	1
47	Characterizations of magnetic transition behavior and electromagnetic properties of Co-Ti co-substituted SrM-based hexaferrites SrCo Ti Fe12-2O19 compounds. Journal of Alloys and Compounds, 2019, 784, 1175-1186.	5.5	35
48	Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties. Journal of Electronic Materials, 2018, 47, 1819-1823.	2.2	9
49	Structural, morphological and magnetic properties of Sr0.3La0.48Ca0.25n[Fe(2â^'0.4/n)O3]Co0.4 (n = 5.5,) and Magnetic Materials, 2018, 449, 360-365.	Tj ETQq1 2.3	1 0.784314 13
50	Effect of Y-La-Co substitution on microstructure and magnetic properties of M-type strontium hexagonal ferrites prepared by ceramic method. Journal of Magnetism and Magnetic Materials, 2018, 445, 1-5.	2.3	29
51	Effect of the Fe/Ba Ratio and Sintering Temperature on Microstructure and Magnetic Properties of Barium Ferrites Prepared by Hydrothermal Method. Journal of Superconductivity and Novel Magnetism, 2018, 31, 933-937.	1.8	6
52	Influence of Temperature on Sr0.35La0.40Ca.25Fe11.6Co0.4O19 Hexagonal Ferrites Against Structural, Morphological and Magnetic Properties Prepared by Conventional Ceramic Reaction Methodology. Journal of Superconductivity and Novel Magnetism, 2018, 31, 925-932.	1.8	5
53	Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution. Journal of Magnetism and Magnetic Materials, 2017, 436, 126-129.	2.3	28
54	Synthesis of Sr .7 Y x La .3 \hat{a} x Fe 12 \hat{a} y Co y O 19 ($x\hat{a}\in \infty = \hat{a}\in \infty$ 0.00, 0.05, 0.10, 0.15) & (y = $\hat{a}\in \infty$ 0.30, 0.25, 0 hexaferrites against structures and magnetic properties prepared by the solid-state reaction method. Chinese Journal of Physics, 2017, 55, 1780-1786.).20, 0.15) 3.9	11

#	Article	IF	CITATIONS
55	Magnetic hysteresis loss crossover in Ni0.6Zn0.4Fe1.95Ti0.05O4 ferrite. Chinese Journal of Physics, 2017, 55, 1230-1234.	3.9	2
56	The effect of Bi substitution on the microstructure and magnetic properties of the Sr0.4Ba0.3La0.3Fe12â^'xBixO19 hexagonal ferrites. Journal of Magnetism and Magnetic Materials, 2017, 422, 209-215.	2.3	18
57	Structural and magnetic properties of La-substituted strontium W-type hexagonal hexaferrites. Materials Technology, 2016, 31, 590-594.	3.0	1
58	Structural and magnetic properties of Sr1â^'x La x Fe12â^'x (Cu0.5Co0.5) x O19 hexaferrites prepared by the solid-state reaction method. Bulletin of Materials Science, 2016, 39, 119-123.	1.7	7
59	Structural and Magnetic Properties of Cr-Substituted NiCuZn Ferrite. High Temperature Materials and Processes, 2016, 35, 531-534.	1.4	2
60	Magnetic hysteresis loss crossover in Ni 0.4 Zn 0.6 Fe 1.95 Ti 0.05 O 4 ferrite. Journal of Alloys and Compounds, 2016, 660, 398-401.	5.5	21
61	Magnetic and structural properties of Sr0.75La0.25FexCu0.20O19 (10.40≤â‰≇1.80) hexagonal ferrites prepared by the solid-state reaction. Journal of Magnetism and Magnetic Materials, 2016, 406, 144-148.	2.3	19
62	Influence of calcium content on the structural and magnetic properties of Sr 0.70â^'x Ca x La 0.30 Fe 11.75 Zn 0.25 O 19 hexagonal ferrites. Journal of Magnetism and Magnetic Materials, 2016, 401, 1039-1045.	2.3	16
63	The microstructure and magnetic properties of Mg–Cu substituted W-type barium hexaferrites. Journal of the Ceramic Society of Japan, 2015, 123, 920-923.	1.1	0
64	The impact of Co/La ratios on microstructure and magnetic properties of the Sr0.75â^'Ca0.25La Fe12â^'Co O19 hexaferrites. Journal of Magnetism and Magnetic Materials, 2015, 384, 64-69.	2.3	19
65	Microstructure and magnetic properties of W-type hexagonal ferrites Ba1â^'xSrxFe2+2Fe3+16O27. Materials Letters, 2015, 157, 277-280.	2.6	14
66	Effects of presintering temperature on structural and magnetic properties of BaMg1.8Cu0.2Fe16O27 hexagonal ferrites. Optik, 2015, 126, 5513-5516.	2.9	7
67	Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites. Journal of Magnetism and Magnetic Materials, 2015, 378, 424-428.	2.3	28
68	Structural and magnetic properties of Ca-substituted barium W-type hexagonal hexaferrites. Journal of Magnetism and Magnetic Materials, 2015, 379, 16-21.	2.3	35
69	Bismuthâ€Based Pervoskite as a Highâ€Performance Cathode for Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. ChemElectroChem, 2014, 1, 554-558.	3.4	23
70	Cerium and niobium doped SrCoO3â^'δas a potential cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 251, 357-362.	7.8	23
71	PrNi0.6Co0.4O3–Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2012, 199, 150-154.	7.8	31
72	LaNi0.6Fe0.4O3–Ce0.8Sm0.2O1.9–Ag composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10968-10974.	7.1	22

#	Article	IF	CITATIONS
73	Ba _{0.9} Co _{0.7} Fe _{0.2} Mo _{0.1} O _{3–δ} : A Promising Singleâ€Phase Cathode for Low Temperature Solid Oxide Fuel Cells. Advanced Energy Materials, 2011, 1, 1094-1096.	19.5	43
74	Study on the normal state resistivity of doped Ru-1222 system. Journal of Materials Science, 2006, 41, 3931-3934.	3.7	0
75	Superfluid density suppression and quasiparticle interaction in Bi2Sr2Ca1â^'xPrxCu2O8+δsingle crystals. Journal of Physics Condensed Matter, 2005, 17, 689-695.	1.8	0
76	Stripe characterization inLa1.6â^'xNd0.4SrxCuO4thin films. Physical Review B, 2004, 70, .	3.2	9
77	Effect of Sb doping on the structure and transport properties of the Ru-1222 system. Physica Status Solidi A, 2003, 198, 137-141.	1.7	10
78	The second magnetization step in Bi2Sr2CaCu2O8\$plus\$\$delta\$ single crystals. Superconductor Science and Technology, 2002, 15, 1068-1070.	3.5	2
79	Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites. Journal of Applied Physics, 2002, 92, 1406-1410.	2.5	157
80	Observation of the spin-glass behavior in iron nitride ε-Fe2N. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0
81	Effect of Hydrogenation on the Glass Formation Ability and Magnetic Properties of the Fe79Si9B6Nb5Cu1 Amorphous Nanocrystalline Alloys. Journal of Superconductivity and Novel Magnetism, 0, , 1.	1.8	1
82	Critical Behavior in the Fe-Based Antiperovskite Compound AlC1.1Fe3. Journal of Superconductivity and Novel Magnetism, 0, , 1.	1.8	0