
Chunhao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3292107/publications.pdf Version: 2024-02-01

СнимнаоТ

#	Article	IF	CITATIONS
1	The Unique Paradigm of Spirochete Motility and Chemotaxis. Annual Review of Microbiology, 2012, 66, 349-370.	7.3	170
2	Cryoelectron tomography reveals the sequential assembly of bacterial flagella in <i>Borrelia burgdorferi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14390-14395.	7.1	99
3	Molecular mechanism for rotational switching of the bacterial flagellar motor. Nature Structural and Molecular Biology, 2020, 27, 1041-1047.	8.2	83
4	Asymmetrical flagellar rotation in <i>Borrelia burgdorferi</i> nonchemotactic mutants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6169-6174.	7.1	77
5	<i>Borrelia burgdorferi</i> Uniquely Regulates Its Motility Genes and Has an Intricate Flagellar Hook-Basal Body Structure. Journal of Bacteriology, 2008, 190, 1912-1921.	2.2	74
6	Inactivation of a putative flagellar motor switch protein FliG1 prevents <i>Borrelia burgdorferi</i> from swimming in highly viscous media and blocks its infectivity. Molecular Microbiology, 2010, 75, 1563-1576.	2.5	73
7	Structure and Expression of the FlaA Periplasmic Flagellar Protein of <i>Borrelia burgdorferi</i> . Journal of Bacteriology, 1998, 180, 2418-2425.	2.2	70
8	The Spirochete FlaA Periplasmic Flagellar Sheath Protein Impacts Flagellar Helicity. Journal of Bacteriology, 2000, 182, 6698-6706.	2.2	65
9	Study of the Response Regulator Rrp1 Reveals Its Regulatory Role in Chitobiose Utilization and Virulence of Borrelia burgdorferi. Infection and Immunity, 2013, 81, 1775-1787.	2.2	63
10	Borrelia burgdorferi Needs Chemotaxis To Establish Infection in Mammals and To Accomplish Its Enzootic Cycle. Infection and Immunity, 2012, 80, 2485-2492.	2.2	62
11	CheX Is a Phosphorylated CheY Phosphatase Essential for Borrelia burgdorferi Chemotaxis. Journal of Bacteriology, 2005, 187, 7963-7969.	2.2	59
12	Genetic Analysis of Spirochete Flagellin Proteins and Their Involvement in Motility, Filament Assembly, and Flagellar Morphology. Journal of Bacteriology, 2008, 190, 5607-5615.	2.2	53
13	Carbon storage regulator A (CsrABb) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Molecular Microbiology, 2011, 82, 851-864.	2.5	52
14	Inactivation of Cyclic Di-GMP Binding Protein TDE0214 Affects the Motility, Biofilm Formation, and Virulence of Treponema denticola. Journal of Bacteriology, 2013, 195, 3897-3905.	2.2	41
15	A surfaceâ€exposed neuraminidase affects complement resistance and virulence of the oral spirochaete <i><scp>T</scp>reponema denticola</i> . Molecular Microbiology, 2013, 89, 842-856.	2.5	39
16	CheY3 of Borrelia burgdorferi Is the Key Response Regulator Essential for Chemotaxis and Forms a Long-Lived Phosphorylated Intermediate. Journal of Bacteriology, 2011, 193, 3332-3341.	2.2	36
17	Chemoreceptors and Flagellar Motors Are Subterminally Located in Close Proximity at the Two Cell Poles in Spirochetes. Journal of Bacteriology, 2011, 193, 2652-2656.	2.2	36
18	Two CheW coupling proteins are essential in a chemosensory pathway of <i>Borrelia burgdorferi</i> . Molecular Microbiology, 2012, 85, 782-794.	2.5	27

Chunhao Li

#	Article	IF	CITATIONS
19	Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility. Nature Microbiology, 2016, 1, 16134.	13.3	27
20	A novel glycan modifies the flagellar filament proteins of the oral bacterium <i><scp>T</scp>reponema denticola</i> . Molecular Microbiology, 2017, 103, 67-85.	2.5	27
21	The Riboswitch Regulates a Thiamine Pyrophosphate ABC Transporter of the Oral Spirochete Treponema denticola. Journal of Bacteriology, 2011, 193, 3912-3922.	2.2	26
22	Lyme disease spirochaete Borrelia burgdorferi does not require thiamin. Nature Microbiology, 2017, 2, 16213.	13.3	26
23	Molecular Mechanisms of hsdS Inversions in the cod Locus of Streptococcus pneumoniae. Journal of Bacteriology, 2019, 201, .	2.2	26
24	A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14955-14960.	7.1	23
25	Differential Regulation of the Multiple Flagellins in Spirochetes. Journal of Bacteriology, 2010, 192, 2596-2603.	2.2	22
26	Disruption of a Type II Endonuclease (TDE0911) Enables Treponema denticola ATCC 35405 To Accept an Unmethylated Shuttle Vector. Applied and Environmental Microbiology, 2011, 77, 4573-4578.	3.1	22
27	HtrAâ€mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation. Molecular Microbiology, 2019, 112, 1308-1325.	2.5	22
28	Cryo-electron tomography of periplasmic flagella in Borrelia burgdorferi reveals a distinct cytoplasmic ATPase complex. PLoS Biology, 2018, 16, e3000050.	5.6	21
29	Multiple domains of bacterial and human Lon proteases define substrate selectivity. Emerging Microbes and Infections, 2018, 7, 1-18.	6.5	21
30	Atypical chemoreceptor arrays accommodate high membrane curvature. Nature Communications, 2020, 11, 5763.	12.8	20
31	Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Research, 2020, 48, 11468-11485.	14.5	20
32	FlhF regulates the number and configuration of periplasmic flagella in <i>Borrelia burgdorferi</i> . Molecular Microbiology, 2020, 113, 1122-1139.	2.5	20
33	A Single-Domain FlgJ Contributes to Flagellar Hook and Filament Formation in the Lyme Disease Spirochete Borrelia burgdorferi. Journal of Bacteriology, 2012, 194, 866-874.	2.2	18
34	Analysis of a flagellar filament cap mutant reveals that HtrA serine protease degrades unfolded flagellin protein in the periplasm of <i>Borrelia burgdorferi</i> . Molecular Microbiology, 2019, 111, 1652-1670.	2.5	18
35	Transcription and genetic analyses of a putative N-acetylmuramyl-l-alanine amidase in Borrelia burgdorferi. FEMS Microbiology Letters, 2008, 290, 164-173.	1.8	15
36	<i>pyrF</i> as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola. Applied and Environmental Microbiology, 2016, 82, 1346-1352.	3.1	14

Chunhao Li

#	Article	IF	CITATIONS
37	Hypothetical Protein BB0569 Is Essential for Chemotaxis of the Lyme Disease Spirochete Borrelia burgdorferi. Journal of Bacteriology, 2016, 198, 664-672.	2.2	13
38	Characterization of Stress and Innate Immunity Resistance of Wild-Type and Δ <i>p66 Borrelia burgdorferi</i> . Infection and Immunity, 2018, 86, .	2.2	11
39	A pleiotropic role of FlaG in regulating the cell morphogenesis and flagellar homeostasis at the cell poles of Treponema denticola. Cellular Microbiology, 2019, 21, e12886.	2.1	9
40	Evidence that TP_0144 of Treponema pallidum Is a Thiamine-Binding Protein. Journal of Bacteriology, 2015, 197, 1164-1172.	2.2	7
41	Three Dimensional Visualization of Bacterial Type III Export Apparatus in the Lyme Disease Spirochete Borrelia burgdorferi. Microscopy and Microanalysis, 2014, 20, 1180-1181.	0.4	5
42	Genetic Manipulations of Oral Spirochete Treponema denticola. Methods in Molecular Biology, 2021, 2210, 15-23.	0.9	4
43	Measuring Borrelia burgdorferi Motility and Chemotaxis. Methods in Molecular Biology, 2018, 1690, 313-317.	0.9	3
44	Transcriptional and functional characterizations of multiple flagellin genes in spirochetes. Molecular Microbiology, 2022, 118, 175-190.	2.5	3