
João P Da Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 2020, 702, 134455.	8.0	1,101
2	(Nano)plastics in the environment – Sources, fates and effects. Science of the Total Environment, 2016, 566-567, 15-26.	8.0	725
3	Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC - Trends in Analytical Chemistry, 2019, 110, 150-159.	11.4	643
4	Microplastics in the environment: Challenges in analytical chemistry - A review. Analytica Chimica Acta, 2018, 1017, 1-19.	5.4	546
5	Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 2017, 586, 10-15.	8.0	421
6	Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 2017, 220, 495-503.	7.5	412
7	Effects of microplastics on microalgae populations: A critical review. Science of the Total Environment, 2019, 665, 400-405.	8.0	288
8	A synopsis on aging—Theories, mechanisms and future prospects. Ageing Research Reviews, 2016, 29, 90-112.	10.9	277
9	Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. International Journal of Environmental Research and Public Health, 2019, 16, 2411.	2.6	258
10	Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. Science of the Total Environment, 2019, 686, 131-139.	8.0	182
11	Antimicrobial peptides: an alternative for innovative medicines?. Applied Microbiology and Biotechnology, 2015, 99, 2023-2040.	3.6	155
12	Contamination issues as a challenge in quality control and quality assurance in microplastics analytics. Journal of Hazardous Materials, 2021, 403, 123660.	12.4	155
13	A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Science of the Total Environment, 2019, 690, 1277-1283.	8.0	149
14	Degradation of polyethylene microplastics in seawater: Insights into the environmental degradation of polymers. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 866-875.	1.7	148
15	Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environmental Science and Pollution Research, 2018, 25, 33599-33610.	5.3	139
16	A One Health perspective of the impacts of microplastics on animal, human and environmental health. Science of the Total Environment, 2021, 777, 146094.	8.0	130
17	Microplastics in soils: assessment, analytics and risks. Environmental Chemistry, 2019, 16, 18.	1.5	97
18	Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chemistry, 2020, 331, 127323.	8.2	95

#	Article	IF	CITATIONS
19	The importance of contamination control in airborne fibers and microplastic sampling: Experiences from indoor and outdoor air sampling in Aveiro, Portugal. Marine Pollution Bulletin, 2020, 159, 111522.	5.0	88
20	The Role of Legislation, Regulatory Initiatives and Guidelines on the Control of Plastic Pollution. Frontiers in Environmental Science, 2020, 8, .	3.3	84
21	Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC - Trends in Analytical Chemistry, 2019, 111, 173-184.	11.4	79
22	Worldwide contamination of fish with microplastics: A brief global overview. Marine Pollution Bulletin, 2020, 160, 111681.	5.0	77
23	An easy method for processing and identification of natural and synthetic microfibers and microplastics in indoor and outdoor air. MethodsX, 2020, 7, 100762.	1.6	68
24	Microplastics – Occurrence, Fate and Behaviour in the Environment. Comprehensive Analytical Chemistry, 2017, , 1-24.	1.3	67
25	A current look at nutraceuticals – Key concepts and future prospects. Trends in Food Science and Technology, 2017, 62, 68-78.	15.1	66
26	Micro- and nanoplastics in the environment: Research and policymaking. Current Opinion in Environmental Science and Health, 2018, 1, 12-16.	4.1	63
27	Effects of spatial and seasonal factors on the characteristics and carbonyl index of (micro)plastics in a sandy beach in Aveiro, Portugal. Science of the Total Environment, 2020, 709, 135892.	8.0	63
28	Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0). Science of the Total Environment, 2020, 719, 137498.	8.0	59
29	Biotechnological tools for the effective management of plastics in the environment. Critical Reviews in Environmental Science and Technology, 2019, 49, 410-441.	12.8	50
30	Microplastic pollution in the sediments of Sidi Mansour Harbor in Southeast Tunisia. Marine Pollution Bulletin, 2019, 146, 92-99.	5.0	48
31	Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. Journal of Materials Chemistry B, 2015, 3, 238-249.	5.8	42
32	Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Medicinal Research Reviews, 2018, 38, 101-146.	10.5	42
33	The 2019 global pandemic and plastic pollution prevention measures: Playing catch-up. Science of the Total Environment, 2021, 774, 145806.	8.0	42
34	Microplastics and fibers from three areas under different anthropogenic pressures in Douro river. Science of the Total Environment, 2021, 776, 145999.	8.0	37
35	Selection of microplastics by Nile Red staining increases environmental sample throughput by micro-Raman spectroscopy. Science of the Total Environment, 2021, 783, 146979.	8.0	36
36	Preparation of biological samples for microplastic identification by Nile Red. Science of the Total Environment, 2021, 783, 147065.	8.0	36

#	Article	IF	CITATIONS
37	Identification of 1â€palmitoylâ€2â€linoleoylâ€phosphatidylethanolamine modifications under oxidative stress conditions by LCâ€MS/MS. Biomedical Chromatography, 2009, 23, 588-601.	1.7	35
38	Environmental status of (micro)plastics contamination in Portugal. Ecotoxicology and Environmental Safety, 2020, 200, 110753.	6.0	32
39	Microfluidics for Peptidomics, Proteomics, and Cell Analysis. Nanomaterials, 2021, 11, 1118.	4.1	30
40	Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy, 2012, 117-118, 57-63.	4.3	29
41	Development of an electrochemical biosensor for alkylphenol detection. Talanta, 2016, 158, 30-34.	5.5	28
42	Effects of virgin and weathered polystyrene and polypropylene microplastics on Raphidocelis subcapitata and embryos of Danio rerio under environmental concentrations. Science of the Total Environment, 2022, 816, 151642.	8.0	28
43	Chemical and structural characterization of Pholiota nameko extracts with biological properties. Food Chemistry, 2017, 216, 176-185.	8.2	27
44	Salivary peptidomic as a tool to disclose new potential antimicrobial peptides. Journal of Proteomics, 2015, 115, 49-57.	2.4	26
45	"Sampling of micro(nano)plastics in environmental compartments: How to define standard procedures?― Current Opinion in Environmental Science and Health, 2018, 1, 36-40.	4.1	24
46	Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications. Sensors, 2018, 18, 840.	3.8	24
47	Sargassum muticum and Osmundea pinnatifida Enzymatic Extracts: Chemical, Structural, and Cytotoxic Characterization. Marine Drugs, 2019, 17, 209.	4.6	24
48	Microplastics on Barra beach sediments in Aveiro, Portugal. Marine Pollution Bulletin, 2021, 167, 112264.	5.0	24
49	Graphene immunosensors for okadaic acid detection in seawater. Microchemical Journal, 2018, 138, 465-471.	4.5	23
50	Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. Applied Microbiology and Biotechnology, 2016, 100, 8283-8302.	3.6	21
51	Methods for the extraction of microplastics in complex solid, water and biota samples. Trends in Environmental Analytical Chemistry, 2022, 33, e00151.	10.3	21
52	A straightforward method for microplastic extraction from organic-rich freshwater samples. Science of the Total Environment, 2022, 815, 152941.	8.0	21
53	Green synthesis of covellite nanocrystals using biologically generated sulfide: Potential for bioremediation systems. Journal of Environmental Management, 2013, 128, 226-232.	7.8	20
54	Potential of the bivalve Corbicula fluminea for the remediation of olive oil wastewaters. Journal of Cleaner Production, 2020, 252, 119773.	9.3	20

#	Article	IF	CITATIONS
55	What Is the Minimum Volume of Sample to Find Small Microplastics: Laboratory Experiments and Sampling of Aveiro Lagoon and Vouga River, Portugal. Water (Switzerland), 2020, 12, 1219.	2.7	20
56	Suspected microplastics in Atlantic horse mackerel fish (Trachurus trachurus) captured in Portugal. Marine Pollution Bulletin, 2022, 174, 113249.	5.0	20
57	Bionanoconjugation for Proteomics applications — An overview. Biotechnology Advances, 2014, 32, 952-970.	11.7	19
58	Carbon nanotube field effect transistor biosensor for the detection of toxins in seawater. International Journal of Environmental Analytical Chemistry, 2017, 97, 597-605.	3.3	19
59	A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. Journal of Proteomics, 2017, 152, 254-275.	2.4	18
60	Disposable biosensor for detection of iron (III) in wines. Talanta, 2016, 154, 80-84.	5.5	17
61	Proteome signatures—how are they obtained and what do they teach us?. Applied Microbiology and Biotechnology, 2015, 99, 7417-7431.	3.6	15
62	How low can you go? A current perspective on low-abundance proteomics. TrAC - Trends in Analytical Chemistry, 2017, 93, 171-182.	11.4	12
63	Salinity induced effects on the growth rates and mycelia composition of basidiomycete and zygomycete fungi. Environmental Pollution, 2017, 231, 1633-1641.	7.5	12
64	Anti-tumoral activity of human salivary peptides. Peptides, 2015, 71, 170-178.	2.4	10
65	White bean (Phaseolus vulgaris L.) as a sorbent for the removal of zinc from rainwater. Water Research, 2019, 162, 170-179.	11.3	9
66	Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 996-1010.	1.7	8
67	Analytical tools to assess aging in humans: The rise of geri-omics. TrAC - Trends in Analytical Chemistry, 2016, 80, 204-212.	11.4	8
68	Considerations when using microplates and Neubauer counting chamber in ecotoxicity tests on microplastics. Marine Pollution Bulletin, 2021, 170, 112615.	5.0	6
69	Nanoplastics in the Environment. Issues in Environmental Science and Technology, 2018, , 82-105.	0.4	4
70	Airborne Microplastics. , 2020, , 1-25.		2
71	Comment on recent article "ldentification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopyâ€ , published in Food Chemistry (2020). Food Chemistry, 2021, 342, 128363.	8.2	2
79	PlÃ:sticos no ambiente. Revista Recursos HÃdricos, 2019, 40, 11-18	0.1	2

ibiente. Revista Recursos HAdricos, 2019, 40, 11-18.

0.1

#	Article	IF	CITATIONS
73	Airborne Microplastics. , 2022, , 177-201.		2
74	Introduction to the Analytical Methodologies for the Analysis of Microplastics. , 2020, , 1-31.		1
75	Biosorption potential of the shell of Corbicula fluminea towards olive oil mill waste. International Journal of Environmental Science and Technology, 2022, 19, 5689-5696.	3.5	1
76	COVID-19: Implications for plastic reduction, with a focus on Personal Protective Equipment (PPE). Journal of Hazardous Materials Advances, 2021, 4, 100022.	3.0	1
77	Introduction to the Analytical Methodologies for the Analysis of Microplastics. , 2022, , 3-32.		1
78	Nanomaterials and Microplastics. , 2018, , 117-117.		0
79	The Effects Of Micro- And Nanoplastics Are Not Yet Fully Understood. , 2018, , .		Ο
80	Collection and Separation of Microplastics. , 2022, , 33-56.		0