Arnold J Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291695/publications.pdf

Version: 2024-02-01

40 papers 12,306 citations

26 h-index

218677

276875
41
g-index

42 all docs 42 docs citations

42 times ranked 17212 citing authors

#	Article	IF	CITATIONS
1	Targeting the P53 Protein for Cancer Therapies: The Translational Impact of P53 Research. Cancer Research, 2022, 82, 362-364.	0.9	22
2	The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Cell Death and Differentiation, 2022, 29, 938-945.	11.2	18
3	Exploring the future of research in the Tp53 field. Cell Death and Differentiation, 2022, 29, 893-894.	11.2	8
4	Fundamental immune–oncogenicity trade-offs define driver mutationÂfitness. Nature, 2022, 606, 172-179.	27.8	23
5	Bispecific antibodies come to the aid of cancer immunotherapy. Molecular Oncology, 2021, 15, 1759-1763.	4.6	3
6	Spontaneous and inherited TP53 genetic alterations. Oncogene, 2021, 40, 5975-5983.	5.9	28
7	Genetic and stochastic influences upon tumor formation and tumor types in Li-Fraumeni mouse models. Life Science Alliance, 2021, 4, e202000952.	2.8	4
8	Geometric network analysis provides prognostic information in patients with high grade serous carcinoma of the ovary treated with immune checkpoint inhibitors. Npj Genomic Medicine, 2021, 6, 99.	3.8	13
9	Identification of relevant genetic alterations in cancer using topological data analysis. Nature Communications, 2020, 11, 3808.	12.8	38
10	p53: 800 million years of evolution and 40 years of discovery. Nature Reviews Cancer, 2020, 20, 471-480.	28.4	421
11	Non-Random Selection of Cancer-Causing Mutations in Tissue-Specific Stem Cells Cause Cancer. Journal of Clinical Oncology and Research, 2020, 8, .	0.5	1
12	The Roles of Initiating Truncal Mutations in Human Cancers: The Order of Mutations and Tumor Cell Type Matters. Cancer Cell, 2019, 35, 10-15.	16.8	114
13	A tumor-specific endogenous repetitive element is induced by herpesviruses. Nature Communications, 2019, 10, 90.	12.8	25
14	Why are there hotspot mutations in the TP53 gene in human cancers?. Cell Death and Differentiation, 2018, 25, 154-160.	11.2	393
15	Dynamic changes during the treatment of pancreatic cancer. Oncotarget, 2018, 9, 14764-14790.	1.8	21
16	The interplay between epigenetic changes and the p53 protein in stem cells. Genes and Development, 2017, 31, 1195-1201.	5.9	40
17	Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551, 512-516.	27.8	854
18	A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature, 2017, 551, 517-520.	27.8	532

#	Article	IF	CITATIONS
19	Inference of Ancestral Recombination Graphs through Topological Data Analysis. PLoS Computational Biology, 2016, 12, e1005071.	3.2	38
20	The Role of the p53 Protein in Stem-Cell Biology and Epigenetic Regulation. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026153.	6.2	35
21	Rethinking the Regulatory Infrastructure for Human Gene Transfer Clinical Trials. Molecular Therapy, 2016, 24, 1173-1177.	8.2	1
22	P53 and the defenses against genome instability caused by transposons and repetitive elements. BioEssays, 2016, 38, 508-513.	2.5	60
23	Lysine methylation represses p53 activity in teratocarcinoma cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9822-9827.	7.1	36
24	Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination. Cell Systems, 2016, 3, 83-94.	6.2	45
25	Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15154-15159.	7.1	69
26	The Evolution of Tumors in Mice and Humans with Germline p53 Mutations. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 139-145.	1.1	17
27	TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor $1\hat{1}\pm$ degradation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 226-231.	7.1	91
28	The evolution of thymic lymphomas in p53 knockout mice. Genes and Development, 2014, 28, 2613-2620.	5.9	64
29	Whole-genome sequencing analysis of phenotypic heterogeneity and anticipation in Li–Fraumeni cancer predisposition syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15497-15501.	7.1	29
30	Selected drugs that inhibit DNA methylation can preferentially kill p53 deficient cells. Oncotarget, 2014, 5, 8924-8936.	1.8	29
31	Multiple Roles of p53-Related Pathways in Somatic Cell Reprogramming and Stem Cell Differentiation. Cancer Research, 2012, 72, 5635-5645.	0.9	78
32	Allele-Specific p53 Mutant Reactivation. Cancer Cell, 2012, 21, 614-625.	16.8	281
33	A High-Frequency Regulatory Polymorphism in the p53 Pathway Accelerates Tumor Development. Cancer Cell, 2010, 18, 220-230.	16.8	108
34	The Origins and Evolution of the p53 Family of Genes. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001198-a001198.	5.5	239
35	Winter Temperature and UV Are Tightly Linked to Genetic Changes in the p53 Tumor Suppressor Pathway in Eastern Asia. American Journal of Human Genetics, 2009, 84, 534-541.	6.2	83
36	The genetics of the p53 pathway, apoptosis and cancer therapy. Nature Reviews Drug Discovery, 2008, 7, 979-987.	46.4	568

ARNOLD J LEVINE

#	Article	IF	CITATIONS
37	A plausible model for the digital response of p53 to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14266-14271.	7.1	319
38	A Single Nucleotide Polymorphism in the MDM2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans. Cell, 2004, 119, 591-602.	28.9	1,158
39	A Role for the Polyproline Domain of p53 in Its Regulation by Mdm2. Journal of Biological Chemistry, 2001, 276, 3785-3790.	3.4	47
40	Surfing the p53 network. Nature, 2000, 408, 307-310.	27.8	6,352