Stefano Legnaioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291420/publications.pdf

Version: 2024-02-01

		76326	82547
152	5,987	40	72
papers	citations	h-index	g-index
155	155	155	2916
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 86-95.	2.9	514
2	Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 1-14.	2.9	362
3	A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 339-353.	2.9	293
4	Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1573-1579.	2.9	261
5	A numerical study of expected accuracy and precision in Calibration-Free Laser-Induced Breakdown Spectroscopy in the assumption of ideal analytical plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1287-1302.	2.9	204
6	Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 723-735.	2.9	150
7	Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1907-1917.	2.9	145
8	Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Applied Optics, 2003, 42, 6133.	2.1	119
9	Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review. Journal of Analytical Atomic Spectrometry, 2019, 34, 81-103.	3.0	118
10	Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 79-80, 88-93.	2.9	117
11	Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1294-1303.	2.9	116
12	Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1392-1401.	2.9	112
13	Mod $ ilde{A}_7$: a new mobile instrument for in situ double-pulse LIBS analysis. Analytical and Bioanalytical Chemistry, 2006, 385, 240-247.	3.7	105
14	Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Applied Geochemistry, 2006, 21, 748-755.	3.0	102
15	Effect of Laser-Induced Crater Depth in Laser-Induced Breakdown Spectroscopy Emission Features. Applied Spectroscopy, 2005, 59, 853-860.	2.2	99
16	Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally- and time-resolved imaging. Applied Physics B: Lasers and Optics, 2005, 80, 559-568.	2.2	83
17	One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 51-56.	2.9	82
18	Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 340-350.	2.9	81

#	Article	IF	CITATIONS
19	Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations. Analytical and Bioanalytical Chemistry, 2006, 385, 316-325.	3.7	72
20	Industrial applications of laser-induced breakdown spectroscopy: a review. Analytical Methods, 2020, 12, 1014-1029.	2.7	72
21	Observation of different mass removal regimes during the laser ablation of an aluminium target in air. Journal of Analytical Atomic Spectrometry, 2008, 23, 1518.	3.0	71
22	Spatial distribution of hydrogen and other emitters in aluminum laser-induced plasma in air and consequences on spatially integrated Laser-Induced Breakdown Spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 980-987.	2.9	69
23	A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in Laser Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 169, 105878.	2.9	69
24	An artificial neural network approach to laser-induced breakdown spectroscopy quantitative analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 52-58.	2.9	68
25	Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 312-323.	2.9	65
26	Quantitative analysis of aluminium alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2006, 21, 697.	3.0	60
27	Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 658-663.	2.9	59
28	Classification of wrought aluminum alloys by Artificial Neural Networks evaluation of Laser Induced Breakdown Spectroscopy spectra from aluminum scrap samples. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 134, 52-57.	2.9	58
29	Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes. Chemistry of Materials, 2018, 30, 2036-2048.	6.7	57
30	A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Applied Physics B: Lasers and Optics, 2015, 118, 353-360.	2.2	56
31	In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1512-1518.	2.9	55
32	Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial- and time-resolved spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 787-796.	2.9	54
33	Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1181-1192.	2.9	50
34	Analytical and mathematical methods for revealing hidden details in ancient manuscripts and paintings: A review. Journal of Advanced Research, 2019, 17, 31-42.	9.5	50
35	X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 74-75, 156-161.	2.9	48
36	Archaeometric Analysis of Ancient Copper Artefacts by Laser-Induced Breakdown Spectroscopy Technique. Mikrochimica Acta, 2005, 152, 105-111.	5.0	47

#	Article	IF	CITATIONS
37	Effect of laser parameters on plasma shielding in single and double pulse configurations during the ablation of an aluminium target. Journal Physics D: Applied Physics, 2009, 42, 225207.	2.8	47
38	On the determination of plasma electron number density from Stark broadened hydrogen Balmer series lines in Laser-Induced Breakdown Spectroscopy experiments. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 88, 98-103.	2.9	46
39	Temporal and Spatial Evolution of a Laser-Induced Plasma from a Steel Target. Applied Spectroscopy, 2003, 57, 715-721.	2.2	44
40	From Calibration-Free to Fundamental Parameters Analysis: A comparison of three recently proposed approaches. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 124, 40-46.	2.9	44
41	Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a â€~black box' approach and how to avoid them. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 144, 46-54.	2.9	42
42	Study of foxing stains on paper by chemical methods, infrared spectroscopy, micro-X-ray fluorescence spectrometry and laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1235-1249.	2.9	40
43	Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 797-802.	2.9	39
44	Wood coated with plasma-polymer for water repellence. Wood Science and Technology, 2008, 42, 149-160.	3.2	39
45	Shock Waves in Laser-Induced Plasmas. Atoms, 2019, 7, 57.	1.6	39
46	Measurement of Stark broadening of Mn I and Mn II spectral lines in plasmas used for Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1237-1245.	2.9	38
47	Characterization of historical mortars from the bell tower of St. Nicholas church (Pisa, Italy). Construction and Building Materials, 2014, 69, 203-212.	7.2	38
48	Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 131, 58-65.	2.9	38
49	Extracting Time-Resolved Information from Time-Integrated Laser-Induced Breakdown Spectra. Journal of Spectroscopy, 2014, 2014, 1-5.	1.3	36
50	Fast quantitative elemental mapping of highly inhomogeneous materials by micro-Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 146, 9-15.	2.9	36
51	Determination of Ash Content of coal by Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 155, 123-126.	2.9	36
52	Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars. Applied Spectroscopy, 2017, 71, 721-727.	2.2	35
53	Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 435-443.	2.9	33
54	Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 141, 53-58.	2.9	31

#	Article	IF	CITATIONS
55	Determination of excitation temperature in laser-induced plasmas using columnar density Saha-Boltzmann plot. Journal of Advanced Research, 2019, 18, 1-7.	9.5	30
56	Progress towards an unassisted element identification from Laser Induced Breakdown Spectra with automatic ranking techniques inspired by text retrieval. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 664-670.	2.9	29
57	Recovery of archaeological wall paintings using novel multispectral imaging approaches. Heritage Science, 2013, 1, .	2.3	29
58	Application of Laser Induced Breakdown Spectroscopy to the identification of emeralds from different synthetic processes. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 102, 48-51.	2.9	29
59	Fast analysis of complex metallic alloys by double-pulse time-integrated Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1068-1072.	2.9	28
60	Comparison of brass alloys composition by laser-induced breakdown spectroscopy and self-organizing maps. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 103-104, 70-75.	2.9	28
61	Evaluation of Thin Film Microextraction for trace elemental analysis of liquid samples using LIBS detection. Talanta, 2021, 223, 121736.	5. 5	28
62	Laser-based continuous monitoring and resolution of steel grades in sequence casting machines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 112, 1-5.	2.9	27
63	Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 127, 1-6.	2.9	26
64	Real time measurement of the electron density of a laser generated plasma using a RC circuit. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 836-840.	2.9	23
65	Identification of inorganic dyeing mordant in textiles by surface-enhanced laser-induced breakdown spectroscopy. Microchemical Journal, 2018, 139, 230-235.	4.5	23
66	Elemental and mineralogical imaging of a weathered limestone rock by double-pulse micro-Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 143, 91-97.	2.9	23
67	Mineralogical, petrographic and physical-mechanical study of Roman construction materials from the Maritime Theatre of Hadrian's Villa (Rome, Italy). Measurement: Journal of the International Measurement Confederation, 2018, 127, 264-276.	5.0	23
68	Novel polystyrene-based nanocomposites by phosphorene dispersion. RSC Advances, 2016, 6, 53777-53783.	3.6	22
69	Exploiting Self-Absorption for Plasma Characterization in Laser-Induced Breakdown Spectroscopy Experiments: A Comparison of Two Recent Approaches. Analytical Chemistry, 2019, 91, 8595-8601.	6.5	22
70	Application of Graph Theory to unsupervised classification of materials by Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 118, 40-44.	2.9	21
71	Laser-Induced Breakdown Spectroscopy for Determination of Spectral Fundamental Parameters. Applied Sciences (Switzerland), 2020, 10, 4973.	2.5	21
72	New evidence for the intentional use of calomel as a white pigment. Journal of Raman Spectroscopy, 2021, 52, 15-22.	2.5	21

#	Article	IF	CITATIONS
73	The constituents of the ink from a Qumran inkwell: new prospects for provenancing the ink on the Dead Sea Scrolls. Journal of Archaeological Science, 2012, 39, 2956-2968.	2.4	19
74	Spectroscopic analysis of bones for forensic studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 70-75.	2.9	19
7 5	The Choir Books of San Giorgio Maggiore in Venice: Results of in Depth Non-Invasive Analyses. Heritage, 2019, 2, 1684-1701.	1.9	19
76	The shining brightness of daylight fluorescent pigments: Raman and SERS study of a modern class of painting materials. Microchemical Journal, 2020, 152, 104292.	4.5	19
77	Reconstruction of laser-induced plasma spectral emissivity in non-axisymmetric conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 888-896.	2.9	18
78	A multidisciplinary approach for the study and the virtual reconstruction of the ancient polychromy of Roman sarcophagi. Journal of Cultural Heritage, 2015, 16, 307-314.	3.3	18
79	Construction and comparison of 3D multi-source multi-band models for cultural heritage applications. Journal of Cultural Heritage, 2018, 34, 261-267.	3.3	18
80	Aquazol as a binder for retouching paints. An evaluation through analytical pyrolysis and thermal analysis. Polymer Degradation and Stability, 2017, 144, 508-519.	5.8	17
81	Discovering "The Italian Flag―by Fernando Melani (1907–1985). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 52-59.	3.9	16
82	Analysis of Serra d'Alto figuline pottery (Matera, Italy): Characterization of the dark decorations using XRF. Microchemical Journal, 2018, 137, 174-180.	4.5	16
83	A multi-analytical characterization of artists' carbon-based black pigments. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3287-3299.	3.6	16
84	A new approach to non-linear multivariate calibration in laser-induced breakdown spectroscopy analysis of silicate rocks. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 166, 105804.	2.9	16
85	Measurement of the Stark Broadening of Atomic Emission Lines in Non–Optically Thin Plasmas by Laserâ€Induced Breakdown Spectroscopy. Spectroscopy Letters, 2007, 40, 643-658.	1.0	15
86	Enhancement of hidden patterns in paintings using statistical analysis. Journal of Cultural Heritage, 2013, 14, S66-S70.	3.3	15
87	Laser-Induced Breakdown Spectroscopy analysis of the limestone Nuragic statues from Mont'e Prama site (Sardinia, Italy). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 62-70.	2.9	15
88	Stratigraphic analysis of historical wooden samples from ancient bowed string instruments by laser induced breakdown spectroscopy. Journal of Cultural Heritage, 2020, 44, 275-284.	3.3	15
89	60 years of street art: A comparative study of the artists' materials through spectroscopic and mass spectrometric approaches. Journal of Cultural Heritage, 2021, 48, 129-140.	3.3	15
90	Applications of LIBS to the Analysis of Metals. Springer Series in Optical Sciences, 2014, , 169-193.	0.7	15

#	Article	IF	CITATIONS
91	Crater drilling enhancement obtained in parallel non-collinear double-pulse laser ablation. Applied Physics A: Materials Science and Processing, 2010, 98, 219-225.	2.3	14
92	Laser-induced breakdown spectroscopy application to control of the process of precious metal recovery and recycling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 71-72, 123-126.	2.9	14
93	Multi-technique study of a ceramic archaeological artifact and its content. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 100, 144-148.	3.9	13
94	Improvement of the performances of a commercial hand-held laser-induced breakdown spectroscopy instrument for steel analysis using multiple artificial neural networks. Review of Scientific Instruments, 2020, 91, 073111.	1.3	13
95	X-Ray Fluorescence Analysis of XII–XIV Century Italian Gold Coins. Journal of Archaeology, 2014, 2014, 1-6.	0.5	12
96	High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy. Journal of Instrumentation, 2016, 11, C08002-C08002.	1,2	11
97	Chemistry of modern paint media: The strained and collapsed painting by Alexis Harding. Microchemical Journal, 2020, 155, 104659.	4.5	11
98	Laser-Induced Breakdown Spectroscopy elemental mapping of the construction material from the Smederevo Fortress (Republic of Serbia). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 181, 106219.	2.9	11
99	Towards a calibration-less ICP-AES method for the determination of trace elements in aqueous solutions: Double ratio plasma diagnostics combined with an internal standard. Journal of Analytical Atomic Spectrometry, 2009, 24, 655.	3.0	10
100	Hydrogen Balmer \hat{l}_{\pm} line behavior in Laser-Induced Breakdown Spectroscopy depth scans of Au, Cu, Mn, Pb targets in air. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 557-564.	2.9	10
101	Xâ€ray fluorescence analysis on a group of coins from the ancient roman city of <i>Tridentum</i> (Trento, Italy). X-Ray Spectrometry, 2014, 43, 370-374.	1.4	10
102	A multidisciplinary approach to the investigation of "La Caverna dell'Antimateria―(1958–1959) by Pind Gallizio. Heritage Science, 2014, 2, .	ot 2.3	10
103	Walking in the Streets of Pisa to Discover the Stones Used in the Middle Ages. Geoheritage, 2019, 11, 1631-1641.	2.8	10
104	Introduction to vibrational spectroscopies. ChemTexts, 2021, 7, 1.	1.9	10
105	Spectroscopic Techniques Applied to the Study of Italian Painted Neolithic Potteries. Laser Chemistry, 2006, 2006, 1-7.	0.5	9
106	Determination of electron temperature temporal evolution in laser-induced plasmas through Independent Component Analysis and 3D Boltzmann plot. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 135, 48-53.	2.9	9
107	Multi-technique characterization of madder lakes: A comparison between non- and micro-destructive methods. Journal of Cultural Heritage, 2018, 33, 208-212.	3.3	9
108	An integrated diagnostic approach to Max Ernst's painting materials in his Attirement of the Bride. Journal of Cultural Heritage, 2020, 43, 329-337.	3.3	9

#	Article	IF	Citations
109	Determination of the Stark broadening coefficients of tantalum emission lines by time-independent Extended C-sigma method. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 167, 105829.	2.9	9
110	Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 167, 105845.	2.9	9
111	X-Ray Fluorescence Analysis and Self-Organizing Maps Classification of the Etruscan Gold Coin Collection at the Monetiere of Florence. Applied Spectroscopy, 2017, 71, 817-822.	2.2	8
112	Quantitative analysis of major components of mineral particulate matter by calibration free laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105918.	2.9	8
113	Graph clustering and portable X-Ray Fluorescence: An application for in situ, fast and preliminary classification of transport amphoras. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 172, 105966.	2.9	8
114	Raman spectroscopy and multivariate analysis as potential tool to follow Alzheimer's disease progression. Analytical and Bioanalytical Chemistry, 2022, 414, 4667-4675.	3.7	8
115	Graphene thin film microextraction and nanoparticle enhancement for fast LIBS metal trace analysis in liquids. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 194, 106471.	2.9	8
116	μ-LIBS/μ-Raman spectroscopic analysis of pigments in a Roman fresco., 2001,,.		7
117	Authors' reply to Wen et al.'s comment. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 872-875.	2.9	7
118	The chemical-physical knowledge before the restoration: the case of "The Plague in Luccaâ€, a masterpiece of Lorenzo Viani (1882–1936). Heritage Science, 2015, 3, .	2.3	7
119	Direct analysis of anthraquinone dyed textiles by Surface Enhanced Raman Spectroscopy and Ag nanoparticles obtained by pulsed laser ablation. European Physical Journal Plus, 2019, 134, 1.	2.6	7
120	Evaluation of Microbial Adhesion and Biofilm Formation on Nano-Structured and Nano-Coated Ortho-Prosthetic Materials by a Dynamic Model. International Journal of Environmental Research and Public Health, 2020, 17, 1013.	2.6	7
121	Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 2022, 76, 959-966.	2.2	7
122	Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 188-191.	2.9	6
123	Electroless deposited silver dendrites for SERS identification of natural dyes on laboratory-dyed and historic textiles. European Physical Journal Plus, 2018, 133, 1.	2.6	6
124	Double and Multiple Pulse LIBS Techniques. Springer Series in Optical Sciences, 2014, , 117-141.	0.7	6
125	Increasing resolution in chemical mapping of geomaterials: From X-ray fluorescence to laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 194, 106482.	2.9	6
126	Provenance of marbles used for building the internal spiral staircase of the bell tower of St. Nicholas Church (Pisa, Italy). Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	5

#	Article	IF	Citations
127	Analysis of the middle Neolithic trichrome pottery: Characterization of the decoration using X-Ray fluorescence and Raman spectroscopy. Journal of Archaeological Science: Reports, 2019, 24, 192-197.	0.5	5
128	About the use of inverse calibration in laser-induced breakdown spectroscopy quantitative analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 170, 105917.	2.9	5
129	Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique. Optoelectronics Letters, 2007, 3, 222-226.	0.8	4
130	Comments on the paper: "Accurate quantitative analysis of gold alloys using multi-pulse laser-induced breakdown spectroscopy and a correlation-based calibration method― Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 357-358.	2.9	4
131	A New Infrared True-Color Approach for Visible-Infrared Multispectral Image Analysis. Journal on Computing and Cultural Heritage, 2019, 12, 1-11.	2.1	4
132	Determination of Spectroscopic Parameters of Ag(I) and Ag(II) Emission Lines Using Time-Independent Extended C-Sigma Method. Applied Spectroscopy, 2021, 75, 654-660.	2.2	4
133	A Multi-Analytical Study of an Ancient Egyptian Limestone Stele for Knowledge and Conservation Purposes: Recovering Hieroglyphs and Figurative Details by Image Analysis. Heritage, 2021, 4, 1193-1207.	1.9	4
134	Dispersion of Few-Layer Black Phosphorus in Binary Polymer Blend and Block Copolymer Matrices. Nanomaterials, 2021, 11, 1996.	4.1	4
135	Characterisation of decoration and glazing materials of late 19th-early 20th century French porcelain and fine earthenware enamels: a preliminary non-invasive study. European Physical Journal Plus, 2021, 136, 1.	2.6	4
136	Incorporation of 2D black phosphorus (2D-bP) in P3HT/PMMA mixtures for novel materials with tuned spectroscopic, morphological and electric features. FlatChem, 2021, 30, 100314.	5 . 6	4
137	An Insight into Gandharan Art: Materials and Techniques of Polychrome Decoration. Heritage, 2022, 5, 488-508.	1.9	4
138	Social and technological changes in the ceramic production of the Northern Levant during the LBA/IA transition: New evidence about the Sea People issue through archaeometry. Journal of Anthropological Archaeology, 2019, 56, 101087.	1.6	3
139	Pottery production and trades in Tamil Nadu region: new insights from Alagankulam and Keeladi excavation sites. Heritage Science, 2020, 8, .	2.3	3
140	<title>Quantitative LIBS analysis of samples from a Le Sueur bronze</title> ., 2006,,.		2
141	Resolving surface details with reflection and fluorescence video-confocal profilometry. Micron, 2007, 38, 104-108.	2.2	2
142	Self-calibrated methods for LIBS quantitative analysis. , 2020, , 561-580.		2
143	Analysis of biological tissues by laser induced breakdown spectroscopy technique. , 2003, , .		1
144	<title>New perspectives in LIBS analysis of polluted soils</title> ., 2006, 6284, 40.		1

#	Article	IF	CITATIONS
145	<title>On the enhancement of laser induced breakdown spectroscopy signal in double pulse configuration</title> ., 2006,,.		1
146	Element detection relying on information retrieval techniques applied to laser spectroscopy. , 2011, , .		1
147	Colloquium Spectroscopicum Internationale XL, Pisa (Italy), 11–16 June 2017. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 43-45.	2.9	1
148	A stochastic model of the process of sequence casting of steel, taking into account imperfect mixing. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	1
149	Fast Quantitative Analysis Of Museum Objects Using Laser-Induced Breakdown Spectroscopy And Multiple Regression Algorithms. , 2009, , .		0
150	Reply to Ira Rabin's Comment on our paper Rasmussen etÂal. (2012). Journal of Archaeological Science, 2014, 43, 155-158.	2.4	0
151	Multispectral imaging to reveal ancient hieroglyphic text in an Egyptian Stele. , 2020, , .		0
152	The Source Materials for Lime Production in the Monte Pisano Area (NW Tuscany, Italy). IOP Conference Series: Earth and Environmental Science, 0, 609, 012078.	0.3	O