List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291000/publications.pdf Version: 2024-02-01

ΔΝΙΔΝΑ ΡΑΟ

#	Article	IF	CITATIONS
1	TET deficiency perturbs mature B cell homeostasis and promotes oncogenesis associated with accumulation of G-quadruplex and R-loop structures. Nature Immunology, 2022, 23, 99-108.	14.5	33
2	HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes and Development, 2022, 36, 433-450.	5.9	17
3	Aptamer-DNA Origami-Functionalized Solid-State Nanopores for Single-Molecule Sensing of G-Quadruplex Formation. ACS Applied Nano Materials, 2022, 5, 8804-8810.	5.0	6
4	5-Azacytidine Transiently Restores Dysregulated Erythroid Differentiation Gene Expression in TET2-Deficient Erythroleukemia Cells. Molecular Cancer Research, 2021, 19, 451-464.	3.4	3
5	Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biology, 2021, 22, 186.	8.8	31
6	BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nature Immunology, 2021, 22, 983-995.	14.5	147
7	Wholeâ€genome analysis of TET dioxygenase function in regulatory T cells. EMBO Reports, 2021, 22, e52716.	4.5	19
8	DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore. ACS Applied Bio Materials, 2021, 4, 451-461.	4.6	14
9	Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nature Nanotechnology, 2021, 16, 1424-1434.	31.5	78
10	Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Molecular and Cellular Proteomics, 2021, 20, 100167.	3.8	23
11	5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function. ELife, 2021, 10, .	6.0	21
12	HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Molecular Cell, 2020, 77, 384-394.e4.	9.7	34
13	Effect of single nanoparticle-nanopore interaction strength on ionic current modulation. Sensors and Actuators B: Chemical, 2020, 325, 128785.	7.8	8
14	Scientific divagations: from signaling and transcription to chromatin changes in T cells. Nature Immunology, 2020, 21, 1473-1476.	14.5	1
15	TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. Blood, 2020, 136, 1394-1401.	1.4	40
16	An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nature Cancer, 2020, 1, 410-422.	13.2	37
17	Activation of the Tec Kinase ITK Controls Graded IRF4 Expression in Response to Variations in TCR Signal Strength. Journal of Immunology, 2020, 205, 335-345.	0.8	23
18	DNMT3A and TET2 mutations reshape hematopoiesis in opposing ways. Nature Genetics, 2020, 52, 554-556.	21.4	9

#	Article	IF	CITATIONS
19	TET methylcytosine oxidases: new insights from a decade of research. Journal of Biosciences, 2020, 45, 1.	1.1	49
20	Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8900-8911.	7.1	24
21	TET methylcytosine oxidases: new insights from a decade of research. Journal of Biosciences, 2020, 45,	1.1	19
22	Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16933-16942.	7.1	81
23	Unusual Activity of a <i>Chlamydomonas</i> TET/JBP Family Enzyme. Biochemistry, 2019, 58, 3627-3629.	2.5	4
24	Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood, 2019, 134, 1487-1497.	1.4	95
25	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
26	Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition. Nature Structural and Molecular Biology, 2019, 26, 607-612.	8.2	48
27	TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 ⁺ T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12410-12415.	7.1	481
28	DNA Translocation through Hybrid Bilayer Nanopores. Journal of Physical Chemistry C, 2019, 123, 11908-11916.	3.1	14
29	Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proceedings of the United States of America, 2019, 116, 9959-9968.	7.1	36
30	Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nature Communications, 2019, 10, 2011.	12.8	107
31	TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the <i>Aicda</i> superenhancer. Science Immunology, 2019, 4, .	11.9	65
32	TET Enzymes and 5hmC in Adaptive and Innate Immune Systems. Frontiers in Immunology, 2019, 10, 210.	4.8	102
33	NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 2019, 567, 530-534.	27.8	519
34	MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. ELife, 2019, 8, .	6.0	29
35	Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell, 2018, 175, 1701-1715.e16.	28.9	588
36	TCR signal strength controls thymic differentiation of iNKT cell subsets. Nature Communications, 2018, 9, 2650.	12.8	79

#	Article	IF	CITATIONS
37	Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood, 2018, 132, 791-803.	1.4	24
38	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.	5.9	49
39	Exhaustion-associated regulatory regions in CD8 ⁺ tumor-infiltrating T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2776-E2785.	7.1	242
40	Lineage-specific functions of TET1 in the postimplantation mouse embryo. Nature Genetics, 2017, 49, 1061-1072.	21.4	96
41	Transcriptional and epigenetic regulation of T cell hyporesponsiveness. Journal of Leukocyte Biology, 2017, 102, 601-615.	3.3	39
42	The microRNA miR-31 inhibits CD8+ T cell function in chronic viral infection. Nature Immunology, 2017, 18, 791-799.	14.5	64
43	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.9	116
44	TET proteins in natural and induced differentiation. Current Opinion in Genetics and Development, 2017, 46, 202-208.	3.3	27
45	TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nature Immunology, 2017, 18, 45-53.	14.5	108
46	TET Methylcytosine Oxidases in T Cell and B Cell Development and Function. Frontiers in Immunology, 2017, 8, 220.	4.8	54
47	Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. Journal of Clinical Investigation, 2017, 127, 2998-3012.	8.2	68
48	Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8267-E8276.	7.1	75
49	LuxGLM: a probabilistic covariate model for quantification of DNA methylation modifications with complex experimental designs. Bioinformatics, 2016, 32, i511-i519.	4.1	15
50	Dynamic Changes in Chromatin Accessibility Occur in CD8 + T Cells Responding to Viral Infection. Immunity, 2016, 45, 1327-1340.	14.3	231
51	TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. Cell Reports, 2016, 15, 1566-1579.	6.4	73
52	Leveraging premalignant biology for immune-based cancer prevention. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10750-10758.	7.1	57
53	DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nature Genetics, 2016, 48, 1014-1023.	21.4	200
54	A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways. Genome Biology, 2016, 17, 49.	8.8	16

#	Article	IF	CITATIONS
55	Control of Foxp3 stability through modulation of TET activity. Journal of Experimental Medicine, 2016, 213, 377-397.	8.5	266
56	Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection. Journal of Immunology, 2016, 196, 2015-2019.	0.8	63
57	Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. ELife, 2016, 5, .	6.0	121
58	Knock-Down of the NFAT2 Long and Intermediate Isoforms Leads to CLL Acceleration. Blood, 2016, 128, 4371-4371.	1.4	0
59	Store-operated calcium entry: Mechanisms and modulation. Biochemical and Biophysical Research Communications, 2015, 460, 40-49.	2.1	166
60	TMEM110 regulates the maintenance and remodeling of mammalian ER–plasma membrane junctions competent for STIM–ORAI signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7083-92.	7.1	58
61	The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells. Immunity, 2015, 42, 265-278.	14.3	555
62	Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4236-45.	7.1	87
63	The histone deacetylase SIRT6 controls embryonic stemÂcell fate via TET-mediated production of 5-hydroxymethylcytosine. Nature Cell Biology, 2015, 17, 545-557.	10.3	137
64	RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1888-97.	7.1	49
65	Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex. Nature Communications, 2015, 6, 7307.	12.8	158
66	Acute loss of TET function results in aggressive myeloid cancer in mice. Nature Communications, 2015, 6, 10071.	12.8	147
67	DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Current Opinion in Cell Biology, 2015, 37, 91-101.	5.4	61
68	<scp>TET</scp> proteins and 5â€methylcytosine oxidation in hematological cancers. Immunological Reviews, 2015, 263, 6-21.	6.0	158
69	A Zebrafish Model of Myelodysplastic Syndrome Produced through <i>tet2</i> Genomic Editing. Molecular and Cellular Biology, 2015, 35, 789-804.	2.3	58
70	Genetic Loss of NFAT2 Leads to CLL Transformation. Blood, 2015, 126, 364-364.	1.4	1
71	Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1676-1683.	7.1	51
72	Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in <i>Coprinopsis cinerea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5149-58.	7.1	25

#	Article	IF	CITATIONS
73	Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1361-1366.	7.1	225
74	Halofuginone-Induced Amino Acid Starvation Regulates Stat3-Dependent Th17 Effector Function and Reduces Established Autoimmune Inflammation. Journal of Immunology, 2014, 192, 2167-2176.	0.8	26
75	Large conserved domains of low DNA methylation maintained by Dnmt3a. Nature Genetics, 2014, 46, 17-23.	21.4	276
76	Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3306-15.	7.1	139
77	Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nature Communications, 2014, 5, 4540.	12.8	39
78	Connections between TET proteins and aberrant DNA modification in cancer. Trends in Genetics, 2014, 30, 464-474.	6.7	221
79	Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nature Immunology, 2014, 15, 777-788.	14.5	153
80	InÂVivo RNA Interference Screens Identify Regulators of Antiviral CD4+ and CD8+ T Cell Differentiation. Immunity, 2014, 41, 325-338.	14.3	95
81	NFAT2 Regulates Anergy Induction in CLL through Lck. Blood, 2014, 124, 720-720.	1.4	2
82	DNA methylation and methylcytosine oxidation in cell fate decisions. Current Opinion in Cell Biology, 2013, 25, 152-161.	5.4	82
83	Global Epigenomic Reconfiguration During Mammalian Brain Development. Science, 2013, 341, 1237905.	12.6	1,609
84	Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature, 2013, 497, 122-126.	27.8	323
85	TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nature Reviews Molecular Cell Biology, 2013, 14, 341-356.	37.0	733
86	Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013, 500, 222-226.	27.8	715
87	TET Proteins and 5-Methylcytosine Oxidation in the Immune System. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 1-10.	1.1	28
88	Transcriptional Mistargeting Of NFAT2 In CLL. Blood, 2013, 122, 4122-4122.	1.4	0
89	Large Conserved Domains Of Low DNA Methylation Maintained By 5-Hydroxymethycytosine and Dnmt3a. Blood, 2013, 122, 2406-2406.	1.4	0
90	NFAT2 Is a Critical Regulator Of Anergy Induction In CLL. Blood, 2013, 122, 869-869.	1.4	0

#	Article	IF	CITATIONS
91	Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nature Chemical Biology, 2012, 8, 311-317.	8.0	301
92	The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine. Nature Protocols, 2012, 7, 1897-1908.	12.0	80
93	Interleukin-4 Production by Follicular Helper T Cells Requires the Conserved II4 Enhancer Hypersensitivity Site V. Immunity, 2012, 36, 175-187.	14.3	137
94	Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14566-14571.	7.1	492
95	Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473, 394-397.	27.8	738
96	Interaction of calcineurin with substrates and targeting proteins. Trends in Cell Biology, 2011, 21, 91-103.	7.9	302
97	Mechanisms of Defective Hydroxylation of 5-Methylcytosine in MDS Include Pathways Other Than TET2 and IDH1/2. Blood, 2011, 118, 462-462.	1.4	0
98	Ca2+/NFAT Signaling Regulates the Expression CD38 and ZAP70 in Murine B Cells and Controls B1a Cell Homeostasis. Blood, 2011, 118, 183-183.	1.4	0
99	TET2: Mechanism and Functional Consequences of Hydroxymethylation. Blood, 2011, 118, SCI-32-SCI-32.	1.4	0
100	Interleukin-2 and Inflammation Induce Distinct Transcriptional Programs that Promote the Differentiation of Effector Cytolytic T Cells. Immunity, 2010, 32, 79-90.	14.3	644
101	Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature, 2010, 468, 839-843.	27.8	1,160
102	NFAT, immunity and cancer: a transcription factor comes of age. Nature Reviews Immunology, 2010, 10, 645-656.	22.7	508
103	Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15169-15174.	7.1	35
104	The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS ONE, 2010, 5, e8888.	2.5	609
105	Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annual Review of Immunology, 2010, 28, 491-533.	21.8	684
106	Impaired Hydroxylation of 5-Methylcytosine In TET2 mutated Patients with Myeloid Malignancies. Blood, 2010, 116, 1-1.	1.4	24
107	Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle, 2009, 8, 1698-1710.	2.6	345
108	Signaling to gene expression: calcium, calcineurin and NFAT. Nature Immunology, 2009, 10, 3-5.	14.5	66

#	Article	IF	CITATIONS
109	Calcium signaling in cells of the immune and hematopoietic systems. Immunological Reviews, 2009, 231, 5-9.	6.0	29
110	Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 2009, 324, 930-935.	12.6	4,989
111	Halofuginone Inhibits T _H 17 Cell Differentiation by Activating the Amino Acid Starvation Response. Science, 2009, 324, 1334-1338.	12.6	361
112	Hyperactivable NFAT1 Ameliorates Autoimmune Encephalitis In Vivo Blood, 2009, 114, 711-711.	1.4	0
113	Introduction to COI volume on lymphocyte activation 2008. Current Opinion in Immunology, 2008, 20, 247-249.	5.5	Ο
114	Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunology, 2008, 9, 432-443.	14.5	528
115	A Molecular Dissection of Lymphocyte Unresponsiveness Induced by Sustained Calcium Signalling. Novartis Foundation Symposium, 2008, , 165-179.	1.1	19
116	Enhanced RNAiâ€1 (Eriâ€1) regulates miRNA homeostasis, rRNA processing, and lymphocyte effector functions. FASEB Journal, 2008, 22, 850.6.	0.5	0
117	Evidence for NFAT1 as a Tumor Suppressor in T-ALL. Blood, 2008, 112, 3804-3804.	1.4	0
118	Structure of Calcineurin in Complex with PVIVIT Peptide: Portrait of a Low-affinity Signalling Interaction. Journal of Molecular Biology, 2007, 369, 1296-1306.	4.2	122
119	Expression of Hyperactivable NFAT1 from the ROSA26 Locus Leads to Detrimental Effects during Embryonic Development Blood, 2007, 110, 2296-2296.	1.4	3
120	REGULATION OF TH2 DIFFERENTIATION ANDIl4LOCUS ACCESSIBILITY. Annual Review of Immunology, 2006, 24, 607-656.	21.8	592
121	FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell, 2006, 126, 375-387.	28.9	1,019
122	A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature, 2006, 441, 646-650.	27.8	343
123	A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441, 179-185.	27.8	2,016
124	Orail is an essential pore subunit of the CRAC channel. Nature, 2006, 443, 230-233.	27.8	1,223
125	Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7554-7559.	7.1	154
126	Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunology, 2004, 5, 255-265.	14.5	489

#	Article	IF	CITATIONS
127	Deletion of a conserved II4 silencer impairs T helper type 1–mediated immunity. Nature Immunology, 2004, 5, 1251-1259.	14.5	103
128	Structural Delineation of the Calcineurin–NFAT Interaction and its Parallels to PP1 Targeting Interactions. Journal of Molecular Biology, 2004, 342, 1659-1674.	4.2	77
129	Transcriptional regulation by calcium, calcineurin, and NFAT. Genes and Development, 2003, 17, 2205-2232.	5.9	1,675
130	Transcriptional Mechanisms Underlying Lymphocyte Tolerance. Cell, 2002, 109, 719-731.	28.9	616
131	Th2 Lineage Commitment and Efficient IL-4 Production Involves Extended Demethylation of the IL-4 Gene. Immunity, 2002, 16, 649-660.	14.3	292
132	A 3′ Enhancer in the IL-4 Gene Regulates Cytokine Production by Th2 Cells and Mast Cells. Immunity, 2002, 17, 41-50.	14.3	108
133	The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544.	10.3	390
134	TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunology, 2002, 3, 643-651.	14.5	462
135	Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunology, 2001, 2, 316-324.	14.5	544
136	Partners in transcription: NFAT and AP-1. Oncogene, 2001, 20, 2476-2489.	5.9	686
137	Requirement for integration of phorbol 12-myristate 13-acetate and calcium pathways is preserved in the transactivation domain of NFAT1. European Journal of Immunology, 2000, 30, 2432-2436.	2.9	19
138	The Duration of Nuclear Residence of NFAT Determines the Pattern of Cytokine Expression in Human SCID T Cells. Journal of Immunology, 2000, 165, 297-305.	0.8	124
139	Cell-Type-Restricted Binding of the Transcription Factor NFAT to a Distal IL-4 Enhancer In Vivo. Immunity, 2000, 12, 643-652.	14.3	246
140	Concerted Dephosphorylation of the Transcription Factor NFAT1 Induces a Conformational Switch that Regulates Transcriptional Activity. Molecular Cell, 2000, 6, 539-550.	9.7	418
141	Molecular regulation of cytokine gene expression during the immune response. Journal of Clinical Immunology, 1999, 19, 98-108.	3.8	39
142	Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science, 1999, 285, 2129-2133.	12.6	562
143	Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature, 1998, 392, 42-48.	27.8	498
144	Sampling the universe of gene expression. Nature Biotechnology, 1998, 16, 1311-1312.	17.5	3

#	Article	IF	CITATIONS
145	Long-range transcriptional regulation of cytokine gene expression. Current Opinion in Immunology, 1998, 10, 345-352.	5.5	68
146	Modulation of Chromatin Structure Regulates Cytokine Gene Expression during T Cell Differentiation. Immunity, 1998, 9, 765-775.	14.3	651
147	Selective Inhibition of NFAT Activation by a Peptide Spanning the Calcineurin Targeting Site of NFAT. Molecular Cell, 1998, 1, 627-637.	9.7	268
148	TRANSCRIPTION FACTORS OF THE NFAT FAMILY:Regulation and Function. Annual Review of Immunology, 1997, 15, 707-747.	21.8	2,417
149	Role of the cyclosporin-sensitive transcription factor NFAT1 in the allergic response. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 147-155.	1.6	13
150	NFATp, a cyclosporin-sensitive transcription factor implicated in cytokine gene induction. Journal of Leukocyte Biology, 1995, 57, 536-542.	3.3	61
151	A Similar DNA-binding Motif in NFAT Family Proteins and the Rel Homology Region. Journal of Biological Chemistry, 1995, 270, 4138-4145.	3.4	126
152	Isolation of the Cyclosporin-Sensitive T Cell Transcription Factor NFATp. Science, 1993, 262, 750-754.	12.6	407
153	The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature, 1993, 365, 352-355.	27.8	746
154	Nuclear factor of activated T cells contains Fos and Jun. Nature, 1992, 356, 801-804.	27.8	487