Anjana Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3291000/publications.pdf

Version: 2024-02-01

8181 9345 42,270 154 76 143 citations h-index g-index papers 162 162 162 40768 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 2009, 324, 930-935.	12.6	4,989
2	TRANSCRIPTION FACTORS OF THE NFAT FAMILY:Regulation and Function. Annual Review of Immunology, 1997, 15, 707-747.	21.8	2,417
3	A mutation in Orail causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441, 179-185.	27.8	2,016
4	Transcriptional regulation by calcium, calcineurin, and NFAT. Genes and Development, 2003, 17, 2205-2232.	5.9	1,675
5	Global Epigenomic Reconfiguration During Mammalian Brain Development. Science, 2013, 341, 1237905.	12.6	1,609
6	Orail is an essential pore subunit of the CRAC channel. Nature, 2006, 443, 230-233.	27.8	1,223
7	Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature, 2010, 468, 839-843.	27.8	1,160
8	FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell, 2006, 126, 375-387.	28.9	1,019
9	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
10	The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature, 1993, 365, 352-355.	27.8	746
11	Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473, 394-397.	27.8	738
12	TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nature Reviews Molecular Cell Biology, 2013, 14, 341-356.	37.0	733
13	Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013, 500, 222-226.	27.8	715
14	Partners in transcription: NFAT and AP-1. Oncogene, 2001, 20, 2476-2489.	5.9	686
15	Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annual Review of Immunology, 2010, 28, 491-533.	21.8	684
16	Modulation of Chromatin Structure Regulates Cytokine Gene Expression during T Cell Differentiation. Immunity, 1998, 9, 765-775.	14.3	651
17	Interleukin-2 and Inflammation Induce Distinct Transcriptional Programs that Promote the Differentiation of Effector Cytolytic T Cells. Immunity, 2010, 32, 79-90.	14.3	644
18	Transcriptional Mechanisms Underlying Lymphocyte Tolerance. Cell, 2002, 109, 719-731.	28.9	616

#	Article	lF	Citations
19	The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS ONE, 2010, 5, e8888.	2.5	609
20	REGULATION OF TH2 DIFFERENTIATION ANDII4LOCUS ACCESSIBILITY. Annual Review of Immunology, 2006, 24, 607-656.	21.8	592
21	Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell, 2018, 175, 1701-1715.e16.	28.9	588
22	Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science, 1999, 285, 2129-2133.	12.6	562
23	The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells. Immunity, 2015, 42, 265-278.	14.3	555
24	Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunology, 2001, 2, 316-324.	14.5	544
25	Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunology, 2008, 9, 432-443.	14.5	528
26	NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 2019, 567, 530-534.	27.8	519
27	NFAT, immunity and cancer: a transcription factor comes of age. Nature Reviews Immunology, 2010, 10, 645-656.	22.7	508
28	Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature, 1998, 392, 42-48.	27.8	498
29	Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14566-14571.	7.1	492
30	Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunology, 2004, 5, 255-265.	14.5	489
31	Nuclear factor of activated T cells contains Fos and Jun. Nature, 1992, 356, 801-804.	27.8	487
32	TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 ⁺ T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12410-12415.	7.1	481
33	TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunology, 2002, 3, 643-651.	14.5	462
34	Concerted Dephosphorylation of the Transcription Factor NFAT1 Induces a Conformational Switch that Regulates Transcriptional Activity. Molecular Cell, 2000, 6, 539-550.	9.7	418
35	Isolation of the Cyclosporin-Sensitive T Cell Transcription Factor NFATp. Science, 1993, 262, 750-754.	12.6	407
36	The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544.	10.3	390

#	Article	IF	CITATIONS
37	Halofuginone Inhibits T _H 17 Cell Differentiation by Activating the Amino Acid Starvation Response. Science, 2009, 324, 1334-1338.	12.6	361
38	Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle, 2009, 8, 1698-1710.	2.6	345
39	A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature, 2006, 441, 646-650.	27.8	343
40	Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature, 2013, 497, 122-126.	27.8	323
41	Interaction of calcineurin with substrates and targeting proteins. Trends in Cell Biology, 2011, 21, 91-103.	7.9	302
42	Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nature Chemical Biology, 2012, 8, 311-317.	8.0	301
43	Th2 Lineage Commitment and Efficient IL-4 Production Involves Extended Demethylation of the IL-4 Gene. Immunity, 2002, 16, 649-660.	14.3	292
44	Large conserved domains of low DNA methylation maintained by Dnmt3a. Nature Genetics, 2014, 46, 17-23.	21.4	276
45	Selective Inhibition of NFAT Activation by a Peptide Spanning the Calcineurin Targeting Site of NFAT. Molecular Cell, 1998, 1, 627-637.	9.7	268
46	Control of Foxp3 stability through modulation of TET activity. Journal of Experimental Medicine, 2016, 213, 377-397.	8.5	266
47	Cell-Type-Restricted Binding of the Transcription Factor NFAT to a Distal IL-4 Enhancer In Vivo. Immunity, 2000, 12, 643-652.	14.3	246
48	Exhaustion-associated regulatory regions in CD8 ⁺ tumor-infiltrating T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2776-E2785.	7.1	242
49	Dynamic Changes in Chromatin Accessibility Occur in CD8 + T Cells Responding to Viral Infection. Immunity, 2016, 45, 1327-1340.	14.3	231
50	Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1361-1366.	7.1	225
51	Connections between TET proteins and aberrant DNA modification in cancer. Trends in Genetics, 2014, 30, 464-474.	6.7	221
52	DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nature Genetics, 2016, 48, 1014-1023.	21.4	200
53	Store-operated calcium entry: Mechanisms and modulation. Biochemical and Biophysical Research Communications, 2015, 460, 40-49.	2.1	166
54	Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex. Nature Communications, 2015, 6, 7307.	12.8	158

#	Article	IF	CITATIONS
55	<scp>TET</scp> proteins and 5â€methylcytosine oxidation in hematological cancers. Immunological Reviews, 2015, 263, 6-21.	6.0	158
56	Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7554-7559.	7.1	154
57	Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nature Immunology, 2014, 15, 777-788.	14.5	153
58	Acute loss of TET function results in aggressive myeloid cancer in mice. Nature Communications, 2015, 6, 10071.	12.8	147
59	BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nature Immunology, 2021, 22, 983-995.	14.5	147
60	Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3306-15.	7.1	139
61	Interleukin-4 Production by Follicular Helper T Cells Requires the Conserved Il4 Enhancer Hypersensitivity Site V. Immunity, 2012, 36, 175-187.	14.3	137
62	The histone deacetylase SIRT6 controls embryonic stemÂcell fate via TET-mediated production of 5-hydroxymethylcytosine. Nature Cell Biology, 2015, 17, 545-557.	10.3	137
63	A Similar DNA-binding Motif in NFAT Family Proteins and the Rel Homology Region. Journal of Biological Chemistry, 1995, 270, 4138-4145.	3.4	126
64	The Duration of Nuclear Residence of NFAT Determines the Pattern of Cytokine Expression in Human SCID T Cells. Journal of Immunology, 2000, 165, 297-305.	0.8	124
65	Structure of Calcineurin in Complex with PVIVIT Peptide: Portrait of a Low-affinity Signalling Interaction. Journal of Molecular Biology, 2007, 369, 1296-1306.	4.2	122
66	Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. ELife, 2016, 5 , .	6.0	121
67	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.9	116
68	A $3\hat{a}\in^2$ Enhancer in the IL-4 Gene Regulates Cytokine Production by Th2 Cells and Mast Cells. Immunity, 2002, 17, 41-50.	14.3	108
69	TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nature Immunology, 2017, 18, 45-53.	14.5	108
70	Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nature Communications, 2019, 10, 2011.	12.8	107
71	Deletion of a conserved II4 silencer impairs T helper type 1–mediated immunity. Nature Immunology, 2004, 5, 1251-1259.	14.5	103
72	TET Enzymes and 5hmC in Adaptive and Innate Immune Systems. Frontiers in Immunology, 2019, 10, 210.	4.8	102

#	Article	IF	CITATIONS
73	Lineage-specific functions of TET1 in the postimplantation mouse embryo. Nature Genetics, 2017, 49, 1061-1072.	21.4	96
74	InÂVivo RNA Interference Screens Identify Regulators of Antiviral CD4+ and CD8+ T Cell Differentiation. Immunity, 2014, 41, 325-338.	14.3	95
75	Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood, 2019, 134, 1487-1497.	1.4	95
76	Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4236-45.	7.1	87
77	DNA methylation and methylcytosine oxidation in cell fate decisions. Current Opinion in Cell Biology, 2013, 25, 152-161.	5.4	82
78	Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16933-16942.	7.1	81
79	The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine. Nature Protocols, 2012, 7, 1897-1908.	12.0	80
80	TCR signal strength controls thymic differentiation of iNKT cell subsets. Nature Communications, 2018, 9, 2650.	12.8	79
81	Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nature Nanotechnology, 2021, 16, 1424-1434.	31.5	78
82	Structural Delineation of the Calcineurin–NFAT Interaction and its Parallels to PP1 Targeting Interactions. Journal of Molecular Biology, 2004, 342, 1659-1674.	4.2	77
83	Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8267-E8276.	7.1	75
84	TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. Cell Reports, 2016, 15, 1566-1579.	6.4	73
85	Long-range transcriptional regulation of cytokine gene expression. Current Opinion in Immunology, 1998, 10, 345-352.	5 . 5	68
86	Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. Journal of Clinical Investigation, 2017, 127, 2998-3012.	8.2	68
87	Signaling to gene expression: calcium, calcineurin and NFAT. Nature Immunology, 2009, 10, 3-5.	14.5	66
88	TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the <i>Aicda</i> superenhancer. Science Immunology, 2019, 4, .	11.9	65
89	The microRNA miR-31 inhibits CD8+ T cell function in chronic viral infection. Nature Immunology, 2017, 18, 791-799.	14.5	64
90	Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection. Journal of Immunology, 2016, 196, 2015-2019.	0.8	63

#	Article	IF	CITATIONS
91	NFATp, a cyclosporin-sensitive transcription factor implicated in cytokine gene induction. Journal of Leukocyte Biology, 1995, 57, 536-542.	3.3	61
92	DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Current Opinion in Cell Biology, 2015, 37, 91-101.	5.4	61
93	TMEM110 regulates the maintenance and remodeling of mammalian ER–plasma membrane junctions competent for STIM–ORAI signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7083-92.	7.1	58
94	A Zebrafish Model of Myelodysplastic Syndrome Produced through <i>tet2</i> Genomic Editing. Molecular and Cellular Biology, 2015, 35, 789-804.	2.3	58
95	Leveraging premalignant biology for immune-based cancer prevention. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10750-10758.	7.1	57
96	TET Methylcytosine Oxidases in T Cell and B Cell Development and Function. Frontiers in Immunology, 2017, 8, 220.	4.8	54
97	Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1676-1683.	7.1	51
98	RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1888-97.	7.1	49
99	YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene, 2018, 37, 5492-5507.	5.9	49
100	TET methylcytosine oxidases: new insights from a decade of research. Journal of Biosciences, 2020, 45, 1.	1.1	49
101	Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition. Nature Structural and Molecular Biology, 2019, 26, 607-612.	8.2	48
102	TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. Blood, 2020, 136, 1394-1401.	1.4	40
103	Molecular regulation of cytokine gene expression during the immune response. Journal of Clinical Immunology, 1999, 19, 98-108.	3.8	39
104	Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nature Communications, 2014, 5, 4540.	12.8	39
105	Transcriptional and epigenetic regulation of T cell hyporesponsiveness. Journal of Leukocyte Biology, 2017, 102, 601-615.	3.3	39
106	An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nature Cancer, 2020, 1, 410-422.	13.2	37
107	Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9959-9968.	7.1	36
108	Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15169-15174.	7.1	35

#	Article	IF	Citations
109	HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Molecular Cell, 2020, 77, 384-394.e4.	9.7	34
110	TET deficiency perturbs mature B cell homeostasis and promotes oncogenesis associated with accumulation of G-quadruplex and R-loop structures. Nature Immunology, 2022, 23, 99-108.	14.5	33
111	Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biology, 2021, 22, 186.	8.8	31
112	Calcium signaling in cells of the immune and hematopoietic systems. Immunological Reviews, 2009, 231, 5-9.	6.0	29
113	MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. ELife, 2019, 8, .	6.0	29
114	TET Proteins and 5-Methylcytosine Oxidation in the Immune System. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 1-10.	1.1	28
115	TET proteins in natural and induced differentiation. Current Opinion in Genetics and Development, 2017, 46, 202-208.	3.3	27
116	Halofuginone-Induced Amino Acid Starvation Regulates Stat3-Dependent Th17 Effector Function and Reduces Established Autoimmune Inflammation. Journal of Immunology, 2014, 192, 2167-2176.	0.8	26
117	Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in <i>Coprinopsis cinerea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5149-58.	7.1	25
118	Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood, 2018, 132, 791-803.	1.4	24
119	Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8900-8911.	7.1	24
120	Impaired Hydroxylation of 5-Methylcytosine In TET2 mutated Patients with Myeloid Malignancies. Blood, 2010, 116, 1-1.	1.4	24
121	Activation of the Tec Kinase ITK Controls Graded IRF4 Expression in Response to Variations in TCR Signal Strength. Journal of Immunology, 2020, 205, 335-345.	0.8	23
122	Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Molecular and Cellular Proteomics, 2021, 20, 100167.	3.8	23
123	5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function. ELife, $2021,10,10$	6.0	21
124	Requirement for integration of phorbol 12-myristate 13-acetate and calcium pathways is preserved in the transactivation domain of NFAT1. European Journal of Immunology, 2000, 30, 2432-2436.	2.9	19
125	A Molecular Dissection of Lymphocyte Unresponsiveness Induced by Sustained Calcium Signalling. Novartis Foundation Symposium, 2008, , 165-179.	1.1	19
126	Wholeâ€genome analysis of TET dioxygenase function in regulatory T cells. EMBO Reports, 2021, 22, e52716.	4.5	19

#	Article	IF	Citations
127	TET methylcytosine oxidases: new insights from a decade of research. Journal of Biosciences, 2020, 45,	1.1	19
128	HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes and Development, 2022, 36, 433-450.	5.9	17
129	A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways. Genome Biology, 2016, 17, 49.	8.8	16
130	LuxGLM: a probabilistic covariate model for quantification of DNA methylation modifications with complex experimental designs. Bioinformatics, 2016, 32, i511-i519.	4.1	15
131	DNA Translocation through Hybrid Bilayer Nanopores. Journal of Physical Chemistry C, 2019, 123, 11908-11916.	3.1	14
132	DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore. ACS Applied Bio Materials, 2021, 4, 451-461.	4.6	14
133	Role of the cyclosporin-sensitive transcription factor NFAT1 in the allergic response. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 147-155.	1.6	13
134	DNMT3A and TET2 mutations reshape hematopoiesis in opposing ways. Nature Genetics, 2020, 52, 554-556.	21.4	9
135	Effect of single nanoparticle-nanopore interaction strength on ionic current modulation. Sensors and Actuators B: Chemical, 2020, 325, 128785.	7.8	8
136	Aptamer-DNA Origami-Functionalized Solid-State Nanopores for Single-Molecule Sensing of G-Quadruplex Formation. ACS Applied Nano Materials, 2022, 5, 8804-8810.	5.0	6
137	Unusual Activity of a <i>Chlamydomonas</i> TET/JBP Family Enzyme. Biochemistry, 2019, 58, 3627-3629.	2.5	4
138	Sampling the universe of gene expression. Nature Biotechnology, 1998, 16, 1311-1312.	17.5	3
139	5-Azacytidine Transiently Restores Dysregulated Erythroid Differentiation Gene Expression in TET2-Deficient Erythroleukemia Cells. Molecular Cancer Research, 2021, 19, 451-464.	3.4	3
140	Expression of Hyperactivable NFAT1 from the ROSA26 Locus Leads to Detrimental Effects during Embryonic Development Blood, 2007, 110, 2296-2296.	1.4	3
141	NFAT2 Regulates Anergy Induction in CLL through Lck. Blood, 2014, 124, 720-720.	1.4	2
142	Scientific divagations: from signaling and transcription to chromatin changes in T cells. Nature Immunology, 2020, 21, 1473-1476.	14.5	1
143	Genetic Loss of NFAT2 Leads to CLL Transformation. Blood, 2015, 126, 364-364.	1.4	1
144	Introduction to COI volume on lymphocyte activation 2008. Current Opinion in Immunology, 2008, 20, 247-249.	5.5	0

#	Article	lF	CITATIONS
145	Enhanced RNAiâ€1 (Eriâ€1) regulates miRNA homeostasis, rRNA processing, and lymphocyte effector functions. FASEB Journal, 2008, 22, 850.6.	0.5	0
146	Evidence for NFAT1 as a Tumor Suppressor in T-ALL. Blood, 2008, 112, 3804-3804.	1.4	0
147	Hyperactivable NFAT1 Ameliorates Autoimmune Encephalitis In Vivo Blood, 2009, 114, 711-711.	1.4	0
148	Mechanisms of Defective Hydroxylation of 5-Methylcytosine in MDS Include Pathways Other Than TET2 and IDH1/2. Blood, 2011, 118, 462-462.	1.4	0
149	Ca2+/NFAT Signaling Regulates the Expression CD38 and ZAP70 in Murine B Cells and Controls B1a Cell Homeostasis. Blood, 2011, 118, 183-183.	1.4	O
150	TET2: Mechanism and Functional Consequences of Hydroxymethylation. Blood, 2011, 118, SCI-32-SCI-32.	1.4	0
151	Transcriptional Mistargeting Of NFAT2 In CLL. Blood, 2013, 122, 4122-4122.	1.4	O
152	Large Conserved Domains Of Low DNA Methylation Maintained By 5-Hydroxymethycytosine and Dnmt3a. Blood, 2013, 122, 2406-2406.	1.4	0
153	NFAT2 Is a Critical Regulator Of Anergy Induction In CLL. Blood, 2013, 122, 869-869.	1.4	O
154	Knock-Down of the NFAT2 Long and Intermediate Isoforms Leads to CLL Acceleration. Blood, 2016, 128, 4371-4371.	1.4	0