Lilian Jara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/32899/publications.pdf

Version: 2024-02-01

33	703	17 h-index	26
papers	citations		g-index
33	33	33	1226
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC Genetics, 2016, 17, 109.	2.7	71
2	BRCA1 and BRCA2 mutations in a South American population. Cancer Genetics and Cytogenetics, 2006, 166, 36-45.	1.0	51
3	Spectrum of BRCA1/2 point mutations and genomic rearrangements in high-risk breast/ovarian cancer Chilean families. Breast Cancer Research and Treatment, 2011, 126, 705-716.	2.5	42
4	Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population. Breast Cancer Research and Treatment, 2010, 122, 813-822.	2.5	40
5	RAD51 135G>C polymorphism and risk of familial breast cancer in a South American population. Cancer Genetics and Cytogenetics, 2007, 178, 65-69.	1.0	37
6	Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population. Breast Cancer Research and Treatment, 2013, 137, 559-569.	2.5	37
7	Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations. Biological Research, 2017, 50, 35.	3.4	37
8	Association of common ATMvariants with familial breast cancer in a South American population. BMC Cancer, 2008, 8, 117.	2.6	33
9	Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population. Molecular Biology Reports, 2014, 41, 3715-3722.	2.3	31
10	Genetic Variants in pre-miR-146a, pre-miR-499, pre-miR-125a, pre-miR-605, and pri-miR-182 Are Associated with Breast Cancer Susceptibility in a South American Population. Genes, 2018, 9, 427.	2.4	31
11	Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. Genes, 2019, 10, 20.	2.4	26
12	IL-8-251T>A (rs4073) Polymorphism Is Associated with Prognosis in Gastric Cancer Patients. Anticancer Research, 2018, 38, 5703-5708.	1.1	25
13	Role of cytokine gene polymorphisms in gastric cancer risk in Chile. Anticancer Research, 2014, 34, 3523-30.	1.1	25
14	The BARD1 Cys557Ser variant and risk of familial breast cancer in a South-American population. Molecular Biology Reports, 2012, 39, 8091-8098.	2.3	23
15	Novel missense mutation of the FAM83H gene causes retention of amelogenin and a mild clinical phenotype of hypocalcified enamel. Archives of Oral Biology, 2015, 60, 1356-1367.	1.8	23
16	Immunotherapeutic Potential of Mollusk Hemocyanins in Combination with Human Vaccine Adjuvants in Murine Models of Oral Cancer. Journal of Immunology Research, 2019, 2019, 1-19.	2.2	22
17	Absence of CHEK2 1100delC mutation in familial breast cancer cases from a South American population. Breast Cancer Research and Treatment, 2008, 110, 543-545.	2.5	18
18	Association of PALB2 sequence variants with the risk of familial and early-onset breast cancer in a South-American population. BMC Cancer, 2015, 15, 30.	2.6	18

#	Article	IF	CITATIONS
19	Diversity of clinical, radiographic and genealogical findings in 41 families with amelogenesis imperfecta. Journal of Applied Oral Science, 2019, 27, e20180359.	1.8	18
20	Distribution of (CGG)n and FMR-1 associated microsatellite alleles in a normal Chilean population. American Journal of Medical Genetics Part A, 1998, 75, 277-282.	2.4	13
21	Polymorphisms in <i>TWIST1</i> and <i>ZEB1</i> Are Associated with Prognosis of Gastric Cancer Patients. Anticancer Research, 2018, 38, 3871-3877.	1.1	13
22	Prevalence of clarithromycin resistance in Helicobacter pylori in Santiago, Chile, estimated by real-time PCR directly from gastric mucosa. BMC Gastroenterology, 2018, 18, 91.	2.0	12
23	Association between single-nucleotide polymorphisms in miRNA and breast cancer risk: an updated review. Biological Research, 2021, 54, 26.	3.4	10
24	Molecular analysis of the eighteen most frequent mutations in the BRCA1 gene in 63 Chilean breast cancer families. Biological Research, 2004, 37, 469-81.	3.4	9
25	Polymorphisms PSCA rs2294008, IL-4 rs2243250 and MUC1 rs4072037 are associated with gastric cancer in a high risk population. Molecular Biology Reports, 2020, 47, 9239-9243.	2.3	7
26	Analysis of 5382insC (BRCA1) and 6174delT (BRCA2) mutations in 382 healthy Chilean women with a family history of breast cancer. Biological Research, 2002, 35, 85-93.	3.4	6
27	Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology. Genes, 2022, 13, 234.	2.4	6
28	NOD1 rs2075820 (p.E266K) polymorphism is associated with gastric cancer among individuals infected with cagPAI-positive H. pylori. Biological Research, 2021, 54, 13.	3.4	5
29	Genetic Variation in MicroRNA-423 Promotes Proliferation, Migration, Invasion, and Chemoresistance in Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 380.	4.1	5
30	Identification of a Rare Germline Heterozygous Deletion Involving the Polycistronic miR-17–92 Cluster in Two First-Degree Relatives from a BRCA 1/2 Negative Chilean Family with Familial Breast Cancer: Possible Functional Implications. International Journal of Molecular Sciences, 2018, 19, 321.	4.1	4
31	Germline Variants in Driver Genes of Breast Cancer and Their Association with Familial and Early-Onset Breast Cancer Risk in a Chilean Population. Cancers, 2020, 12, 249.	3.7	4
32	Heritable genomic diversity in breast cancer driver genes and associations with risk in a Chilean population. Biological Research, 2022, 55, .	3.4	1
33	The Genetic Population Structure of Robinson Crusoe Island, Chile. Frontiers in Genetics, 2020, 11, 669.	2.3	0