Wayne W Harding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3289151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Further studies on C2′-substituted 1-phenylbenzazepines as dopamine D1 receptor ligands. Bioorganic Chemistry, 2022, 127, 105953.	4.1	2
2	New tetrahydroisoquinoline-based D3R ligands with an o-xylenyl linker motif. Bioorganic and Medicinal Chemistry Letters, 2021, 42, 128047.	2.2	2
3	Structural manipulation of aporphines via C10 nitrogenation leads to the identification of new 5-HT7AR ligands. Bioorganic and Medicinal Chemistry, 2020, 28, 115578.	3.0	4
4	Synthesis and dopamine receptor pharmacological evaluations on ring C ortho halogenated 1-phenylbenzazepines. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127305.	2.2	6
5	First synthesis of thiazepino[3,4â€a]isoquinolines, a facile new synthetic route to diazepino[3,4â€a]isoquinolines and assessment of their dopamine and σ receptor affinities. Journal of Heterocyclic Chemistry, 2020, 57, 3709-3713.	2.6	3
6	Identification of C10 nitrogen-containing aporphines with dopamine D1 versus D5 receptor selectivity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127053.	2.2	7
7	Synthesis, pharmacological evaluations, and molecular docking studies on a new 1,3,4,11bâ€tetrahydroâ€1 H â€fluoreno[9,1―cd]azepine framework: Rigidification of D 1 receptor selective 1â€phenylbenzazepines and discovery of a new 5â€HT 6 receptor scaffold. Chemical Biology and Drug Design, 2020, 96, 825-835.	3.2	1
8	Inclusion of enclosed hydration effects in the binding free energy estimation of dopamine D3 receptor complexes. PLoS ONE, 2019, 14, e0222902.	2.5	9
9	Structure-activity profiling of alkaloid natural product pharmacophores against a Schistosoma serotonin receptor. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 550-558.	3.4	11
10	New Dopamine D3-Selective Receptor Ligands Containing a 6-Methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol Motif. ACS Medicinal Chemistry Letters, 2018, 9, 990-995.	2.8	8
11	Diverse Approaches and Recent Advances in the Synthesis of Tetrahydroprotoberberines. Current Organic Chemistry, 2018, 22, 1893-1905.	1.6	2
12	Synthesis and evaluation of C9 alkoxy analogues of (-)-stepholidine as dopamine receptor ligands. European Journal of Medicinal Chemistry, 2017, 125, 255-268.	5.5	9
13	Aporphine Alkaloids as Ligands for Serotonin Receptors. , 2016, 06, .		8
14	An alternative synthesis and X-ray crystallographic confirmation of (â^')-stepholidine. Tetrahedron Letters, 2016, 57, 2090-2092.	1.4	6
15	New halogenated tris-(phenylalkyl)amines as h 5-HT 2B receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3216-3219.	2.2	2
16	Tetrahydroprotoberberine alkaloids with dopamine and $\ddot{l}f$ receptor affinity. Bioorganic and Medicinal Chemistry, 2016, 24, 2060-2071.	3.0	17
17	Semisynthetic Studies on and Biological Evaluation of <i>N</i> -Methyllaurotetanine Analogues as Ligands for 5-HT Receptors. Journal of Natural Products, 2015, 78, 722-729.	3.0	12
18	A divergent route to 9,10-oxygenated tetrahydroprotoberberine and 8-oxoprotoberberine alkaloids: synthesis of (±)-isocorypalmine andÂoxypalmatine. Tetrahedron, 2015, 71, 1227-1231.	1.9	24

WAYNE W HARDING

#	Article	IF	CITATIONS
19	C4 phenyl aporphines with selective h5-HT2B receptor affinity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3451-3454.	2.2	12
20	Synthesis and evaluation of aporphine analogs containing C1 allyl isosteres at the h5-HT2A receptor. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5102-5106.	2.2	9
21	Identification of tris-(phenylalkyl)amines as new selective h5-HT _{2B} receptor antagonists. MedChemComm, 2015, 6, 601-605.	3.4	4
22	Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: Identification of a new aporphine with 5-HT2A antagonist activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1664-1667.	2.2	17
23	Aporphinoid Antagonists of 5â€ <scp>HT</scp> _{2A} Receptors: Further Evaluation of Ring <scp>A</scp> Substituents and the Size of Ring <scp>C</scp> . Chemical Biology and Drug Design, 2014, 84, 558-566.	3.2	8
24	Facile synthesis of 4,5,6a,7-tetrahydrodibenzo[de,g]chromene heterocycles and their transformation to phenanthrene alkaloids. Tetrahedron, 2013, 69, 8914-8920.	1.9	7
25	A Route to Azafluoranthene Natural Products Through Direct Arylation. European Journal of Organic Chemistry, 2013, 2013, 1107-1115.	2.4	19
26	Leonurenones A–C: Labdane diterpenes from Leonotis leonurus. Phytochemistry, 2012, 83, 168-172.	2.9	16
27	New aporphinoid 5-HT2A and α1A antagonists via structural manipulations of nantenine. Bioorganic and Medicinal Chemistry, 2011, 19, 5861-5868.	3.0	20
28	Synthesis of C-homoaporphines via microwave-assisted direct arylation. Tetrahedron, 2011, 67, 569-575.	1.9	17
29	Cytotoxicity of aporphines in human colon cancer cell lines HCT-116 and Caco-2: An SAR study. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4462-4464.	2.2	19
30	Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 46-55.	5.2	22
31	Affinity of aporphines for the human 5-HT2A receptor: Insights from homology modeling and molecular docking studies. Bioorganic and Medicinal Chemistry, 2010, 18, 5562-5575.	3.0	32
32	Synthetic studies and pharmacological evaluations on the MDMA (â€~Ecstasy') antagonist nantenine. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 628-631.	2.2	18
33	Microwave-assisted direct biaryl coupling: first application to the synthesis of aporphines. Tetrahedron Letters, 2009, 50, 2437-2439.	1.4	31
34	(±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2530-2532.	2.2	23
35	Herkinorin Analogues with Differential β-Arrestin-2 Interactions. Journal of Medicinal Chemistry, 2008, 51, 2421-2431.	6.4	62
36	New Drimane Sesquiterpenoids from <i>Tidestromia Oblongifolia</i> . Natural Product Communications, 2008, 3, 1934578X0800301.	0.5	0

WAYNE W HARDING

#	Article	IF	CITATIONS
37	Synthetic Studies of Neoclerodane Diterpenes from Salvia divinorum:  Preparation and Opioid Receptor Activity of Salvinicin Analogues. Journal of Medicinal Chemistry, 2007, 50, 3596-3603.	6.4	46
38	Mu opioid receptor activation without arrestinâ€interactions; a pharmacological approach FASEB Journal, 2007, 21, A426.	0.5	0
39	Synthetic Studies of Neoclerodane Diterpenes fromSalviadivinorum:Â Semisynthesis of Salvinicins A and B and Other Chemical Transformations of Salvinorin Aâ€. Journal of Natural Products, 2006, 69, 107-112.	3.0	52
40	Synthesis of Salvinorin A Analogues as Opioid Receptor Probes. Journal of Natural Products, 2006, 69, 914-918.	3.0	52
41	Synthetic studies of neoclerodane diterpenes from Salvia divinorum: Selective modification of the furan ring. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3170-3174.	2.2	47
42	Determination of Salvinorin A in body fluids by high performance liquid chromatography–atmospheric pressure chemical ionization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 818, 221-225.	2.3	58
43	Enantioselective synthesis of (2R,3R)- and (2S,3S)-2-[(3-chlorophenyl)-(2-methoxyphenoxy)methyl]morpholine. Tetrahedron: Asymmetry, 2005, 16, 2249-2256.	1.8	13
44	Salvinicins A and B, New Neoclerodane Diterpenes fromSalviadivinorum. Organic Letters, 2005, 7, 3017-3020.	4.6	57
45	Pharmacokinetics of the plant-derived κ-opioid hallucinogen salvinorin A in nonhuman primates. Synapse, 2005, 58, 208-210.	1.2	74
46	Neoclerodane Diterpenes as a Novel Scaffold for μ Opioid Receptor Ligandsâ€. Journal of Medicinal Chemistry, 2005, 48, 4765-4771.	6.4	139
47	Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food and Chemical Toxicology, 2005, 43, 1667-1672.	3.6	107
48	k Opioids as potential treatments for stimulant dependence. AAPS Journal, 2005, 7, E592-E599.	4.4	62
49	A facile method for the preparation of deuterium labeled salvinorin A: synthesis of [2,2,2-2H3]-salvinorin A. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5099-5102.	2.2	62
50	New Diterpenes from Jatropha divaricata. Journal of Natural Products, 2001, 64, 829-831.	3.0	41
51	A new squalene-derived epoxy tri-THF diol from Spathelia glabrescens. Tetrahedron Letters, 2001, 42, 7379-7381.	1.4	10
52	Cycloartanes, Protolimonoids, a Pregnane and a New Ergostane fromTrichilia Reticulata. Natural Product Research, 2001, 15, 253-260.	0.4	11
53	Alvaradoins Aâ^D. Anthracenone C Arabinosides from Alvaradoa jamaicensis. Journal of Natural Products, 1999, 62, 98-101.	3.0	14
54	Assignment of ¹ H and ¹³ C spectra for polyprenol-12, a molecule with severe ¹ H and ¹³ C spectral crowding, with the aid of high-resolution, ¹³ C-detected, ¹³ C- ¹ H shift correlation spectra. Canadian Journal of Chemistry, 1999, 77, 1922-1930.	1.1	11

#	Article	IF	CITATIONS
55	Glabrescol. A unique squalene-derived penta-THF diol from Spathelia glabrescens (rutaceae). Tetrahedron Letters, 1995, 36, 9137-9140.	1.4	47