
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288784/publications.pdf Version: 2024-02-01

PIERO RADACNANI

#	Article	IF	CITATIONS
1	Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment. European Physical Journal Plus, 2022, 137, .	1.2	3
2	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
3	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. European Physical Journal Plus, 2021, 136, 1.	1.2	5
4	Towards ponderomotive squeezing with SIPS experiment. Physica Scripta, 2021, 96, 114007.	1.2	3
5	Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. European Physical Journal Plus, 2021, 136, 1.	1.2	5
6	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
7	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
8	Progress in a Vacuum Weight Search Experiment. Physics, 2020, 2, 1-13.	0.5	11
9	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
10	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
11	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30
12	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	2.9	36
13	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
14	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
15	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166
16	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
17	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
18	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808

#	Article	IF	CITATIONS
19	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
20	Magnetic coupling to the advanced Virgo payloads and its impact on the low frequency sensitivity. Review of Scientific Instruments, 2018, 89, 114501.	0.6	13
21	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473

22 Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

23	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
24	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
25	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
26	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
27	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
28	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
29	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
30	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
31	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
32	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
33	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
34	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
35	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
36	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674

#	Article	IF	CITATIONS
37	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
38	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
39	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
40	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
41	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
42	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
43	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
44	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
45	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
46	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
47	Casimir energy for two and three superconducting coupled cavities: Numerical calculations. European Physical Journal Plus, 2017, 132, 1.	1.2	4
48	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
49	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
50	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
51	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
52	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
53	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
54	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73

#	Article	IF	CITATIONS
55	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
56	Advanced Virgo Status. , 2017, , .		0
57	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
58	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
59	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
60	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
61	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
62	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
63	The Archimedes experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 646-647.	0.7	7
64	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
65	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
66	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
67	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
68	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102
69	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
70	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
71	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
72	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315

#	Article	IF	CITATIONS
73	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
74	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
75	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
76	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
77	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
78	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
79	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
80	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
81	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
82	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
83	The Advanced Virgo monolithic fused silica suspension. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 644-645.	0.7	14
84	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
85	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
86	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
87	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
88	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
89	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
90	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029

#	Article	IF	CITATIONS
91	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
92	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
93	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
94	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
95	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
96	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
97	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
98	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
99	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
100	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
101	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
102	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
103	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
104	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
105	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>i³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	2.9	32
106	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35
107	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
108	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2

#	Article	IF	CITATIONS
109	An Introduction to the Virgo Suspension System. Astrophysics and Space Science Library, 2014, , 193-223.	1.0	0
110	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
111	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
112	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
113	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
114	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
115	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
116	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
117	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
118	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
119	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
120	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
121	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
122	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2
123	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
124	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
125	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
126	PROGRESSES IN THE REALIZATION OF A MONOLITHIC SUSPENSION SYSTEM IN VIRGO. , 2012, , .		0

#	Article	IF	CITATIONS
127	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
128	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85, .	1.6	48
129	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
130	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
131	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
132	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0
133	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
134	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
135	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
136	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
137	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
138	NOISE ANALYSIS IN VIRGO: ON-LINE AND OFFLINE TOOLS FOR NOISE CHARACTERIZATION. , 2012, , .		0
139	PLANS FOR THE UPGRADE OF THE GRAVITATIONAL WAVE DETECTOR VIRGO: ADVANCED VIRGO. , 2012, , .		1
140	FIRST CRYOGENIC TEST OF A MIRROR SUSPENSION FOR THE 3RD GENERATION G.W. INTERFEROMETER. , 2012,		0
141	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
142	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
143	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
144	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55

#	Article	IF	CITATIONS
145	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
146	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
147	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
148	A cryogenic payload for the 3rd generation of gravitational wave interferometers. Astroparticle Physics, 2011, 35, 67-75.	1.9	3
149	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
150	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
151	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
152	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
153	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
154	Preliminary results on the cryogenic payload for the 3rd generation g.w. interferometers. Journal of Physics: Conference Series, 2010, 228, 012030.	0.3	0
155	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
156	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
157	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
158	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
159	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
160	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
161	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
162	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287

#	Article	IF	CITATIONS
163	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
164	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
165	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
166	Gravitational wave detectors on the earth. Classical and Quantum Gravity, 2010, 27, 194001.	1.5	0
167	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
168	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
169	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
170	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
171	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
172	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 ${\rm \AA}-10{\rm \^a}^2$ 1 on a 100 ms time scale. , 2009, , .		4
173	Laser with an in-loop relative frequency stability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><m a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</m </mml:mrow></mml:msup></mml:mrow></mml:math 	ml:mn>10	<
174	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
175	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	1.5	16
176	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
177	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
178	In-vacuum optical isolation changes by heating in a Faraday isolator. Applied Optics, 2008, 47, 5853.	2.1	13
179	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	1.2	7
180	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13

#	Article	lF	CITATIONS
181	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
182	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
183	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28
184	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
185	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
186	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
187	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
188	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	1.2	5
189	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.3	15
190	The status of virgo. Journal of Physics: Conference Series, 2008, 110, 062025.	0.3	5
191	FIRST COINCIDENCE SEARCH AMONG PERIODIC GRAVITATIONAL WAVE SOURCE CANDIDATES USING VIRGO DATA. , 2008, , .		1
192	VIRGO DATA ANALYSIS FOR C6 AND C7 ENGINEERING RUNS. , 2008, , .		0
193	VIRGO COMMISSIONING PROGRESS. , 2008, , .		Ο
194	THE STATUS OF THE VIRGO GRAVITATIONAL WAVE DETECTOR. , 2008, , .		0
195	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
196	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	1.5	10
197	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	1.5	19
198	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	1.5	13

#	Article	IF	CITATIONS
199	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	1.5	9
200	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	1.5	4
201	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	1.5	56
202	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	1.5	9
203	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
204	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
205	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
206	Experimental upper limit on the estimated thermal noise at low frequencies in a gravitational wave detector. Physical Review D, 2007, 76, .	1.6	2
207	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	2.0	7
208	Vibration-free cryostat for low-noise applications of a pulse tube cryocooler. Review of Scientific Instruments, 2006, 77, 095102.	0.6	32
209	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.3	3
210	Considerations on collected data with the Low Frequency Facility experiment. Journal of Physics: Conference Series, 2006, 32, 346-352.	0.3	3
211	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.3	21
212	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.3	0
213	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.3	4
214	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	2.4	5
215	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	1.5	7
216	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	1.5	0

#	Article	IF	CITATIONS
217	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	1.5	22
218	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	1.5	16
219	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	1.5	83
220	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	1.5	3
221	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	1.5	179
222	Experimental evidence for an optical spring. Physical Review A, 2006, 74, .	1.0	19
223	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	1.9	79
224	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.3	2
225	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.3	10
226	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	1.5	6
227	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	1.5	4
228	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	1.5	2
229	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	1.5	54
230	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	1.5	7
231	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	1.5	5
232	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	1.5	13
233	First results of the low frequency facility experiment. Classical and Quantum Gravity, 2004, 21, S1099-S1106.	1.5	4
234	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	1.5	30

#	Article	IF	CITATIONS
235	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	1.5	89
236	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	1.5	5
237	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	1.5	5
238	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	1.5	25
239	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	1.5	1
240	The AMS-02 TRD for the international space station. IEEE Transactions on Nuclear Science, 2004, 51, 1365-1372.	1.2	34
241	Sensitivity of the Low Frequency Facility experiment around 10ÂHz. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 322, 1-9.	0.9	4
242	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	1.9	19
243	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	1.9	22
244	Lock acquisition of the central interferometer of the gravitational wave detector Virgo. Astroparticle Physics, 2004, 21, 465-477.	1.9	4
245	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	1.9	22
246	THE PERFORMANCE OF THE AMS-02 TRD. , 2004, , .		1
247	Status of VIRGO. , 2004, 5500, 58.		2
248	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
249	STATUS OF THE VIRGO EXPERIMENT. , 2004, , .		0
250	Status report of the low frequency facility experiment, Virgo R&D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 199-204.	0.9	6
251	Influence of a mirror holder on thermal noise in gravitational wave interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 315, 409-417.	0.9	1
252	The low frequency facility Fabry–Perot cavity used as a speed-meter. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 316, 1-9.	0.9	6

#	Article	IF	CITATIONS
253	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	1.5	9
254	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	1.5	7
255	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	0.6	14
256	Status of the low frequency facility experiment. Classical and Quantum Gravity, 2002, 19, 1675-1682.	1.5	3
257	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	1.5	85
258	Monitoring the acoustic emission of the blades of the mirror suspension for a gravitational wave interferometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 389-397.	0.9	14
259	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	0.6	89
260	The Maraging steel blades of the Virgo Super Attenuator. AIP Conference Proceedings, 2000, , .	0.3	4
261	Prototype of the suspension last stages for the mirrors of the Virgo interferometric gravitational wave antenna. AIP Conference Proceedings, 2000, , .	0.3	1
262	The maraging-steel blades of the Virgo super attenuator. Measurement Science and Technology, 2000, 11, 467-476.	1.4	31
263	Elastic and anelastic properties of Marval 18 steel. Journal of Alloys and Compounds, 2000, 310, 400-404.	2.8	4
264	Suspension last stages for the mirrors of the Virgo interferometric gravitational wave antenna. Review of Scientific Instruments, 1999, 70, 3463-3472.	0.6	51
265	Electromagnetic coupling dissipation between mirrors and reaction masses in Virgo. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 252, 11-16.	0.9	4
266	Characterization of mechanical dissipation spectral behavior using a gravitomagnetic pendulum. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255, 142-146.	0.9	3
267	Experimental study of the dynamic Newtonian field with a cryogenic gravitational wave antenna. European Physical Journal C, 1998, 5, 651-664.	1.4	11
268	Status and noise limit of the VIRGO antenna. , 1998, , .		1
269	Search for gravitational radiation from Supernova 1993J. Physical Review D, 1997, 56, 6081-6084.	1.6	4
270	The VIRGO interferometer for gravitational wave detection. Nuclear Physics, Section B, Proceedings Supplements, 1997, 54, 167-175.	0.5	50

#	Article	IF	CITATIONS
271	Experimental study of a Back Action Evading device for continuos measurements on a macroscopic harmonic oscillator at the quantum limit level. Applied Physics B: Lasers and Optics, 1997, 64, 145-151.	1.1	1
272	The gravitational wave detector NAUTILUS operating at T = 0.1 K. Astroparticle Physics, 1997, 7, 231-243.	1.9	132
273	The ultracryogenic gravitational wave detector NAUTILUS. European Physical Journal D, 1996, 46, 2907-2908.	0.4	0
274	Cosmic-ray-induced cascades on the ultracryogenic antenna NAUTILUS. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 101-103.	0.5	0
275	Status of the VIRGO experiment. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 107-109.	0.5	7
276	Upper limit for a gravitational-wave stochastic background with the EXPLORER and NAUTILUS resonant detectors. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 385, 421-424.	1.5	26
277	Test of a back-action evading scheme on a cryogenic gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 215, 141-148.	0.9	7
278	Signal-to-noise ratio analysis for a back-action-evading measurement on a double harmonic oscillator. Physical Review D, 1994, 50, 3596-3607.	1.6	6
279	Performances of a super conductive parabridge transducer for liquidhelium temperature applications. Cryogenics, 1994, 34, 443-447.	0.9	1
280	Anelastic properties of resonant transducers for cryogenic gravitational wave antennas. Journal of Alloys and Compounds, 1994, 211-212, 644-648.	2.8	1
281	Anelastic and elastic properties of a synthetic monocrystal of bismuth germanate Bi4Ge3O12 at low temperatures. Journal of Alloys and Compounds, 1994, 211-212, 640-643.	2.8	2
282	Observation of the Brownian motion of a mechanical oscillator by means of a back action evading system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 180, 43-49.	0.9	10
283	Upper limit for nuclearite flux from the Rome gravitational wave resonant detectors. Physical Review D, 1993, 47, 4770-4773.	1.6	23
284	Weber-type gravitational wave antenna with two resonant transducers: A new tool for gravitational wave signal identification. Physical Review D, 1993, 47, 5233-5237.	1.6	4
285	Back-action-evading transducing scheme for cryogenic gravitational wave antennas. Physical Review D, 1993, 48, 448-465.	1.6	27
286	Long-term operation of the Rome "Explorer" cryogenic gravitational wave detector. Physical Review D, 1993, 47, 362-375.	1.6	130
287	Test facility for resonance transducers of cryogenic gravitational wave antennas. Measurement Science and Technology, 1992, 3, 501-507.	1.4	6
288	Noise behaviour of the Explorer gravitational wave antenna during λ transition to the superfluid phase. Cryogenics, 1992, 32, 668-670.	0.9	8

#	Article	IF	CITATIONS
289	Coincidences among the data recorded by the baksan, kamioka and mont blanc underground neutrino detectors, and by the Maryland and Rome gravitational-wave detectors during Supernova 1987 A. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 171-193.	0.2	23
290	Evaluation and preliminary measurement of the interaction of a dynamical gravitational near field with a cryogenic gravitational wave antenna. Zeitschrift Für Physik C-Particles and Fields, 1991, 50, 21-29.	1.5	26
291	Correlation between the Maryland and Rome gravitational-wave detectors and the Mont Blanc, Kamioka and IMB particle detectors during SN 1987 A. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1991, 106, 1257-1269.	0.2	8
292	First Cooling Below 0.1 K of the New Gravitational-Wave Antenna "Nautilus―of the Rome Group. Europhysics Letters, 1991, 16, 231-235.	0.7	64
293	Sensitivity of the Rome Gravitational Wave Experiment with the Explorer Cryogenic Resonant Antenna Operating at 2 K. Europhysics Letters, 1990, 12, 5-11.	0.7	27
294	Analysis of the data recorded by the Mont Blanc neutrino detector and by the Maryland and Rome gravitational-wave detectors during SN1987A. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1989, 12, 75-103.	0.2	60
295	Coincidences among the Maryland and Rome Gravitational Wave Detector Data and the Mont Blanc and Kamioka Neutrino Detector Data in the Period of SN1987A. Annals of the New York Academy of Sciences, 1989, 571, 561-576.	1.8	9
296	Data Recordered by the Rome Room Temperature Gravitational Wave Antenna, during the Supernova SN 1987 <i>a</i> in the Large Magellanic Cloud. Europhysics Letters, 1987, 3, 1325-1330.	0.7	51
297	Data analysis for a gravitational wave antenna with resonant capacitive transducer. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1986, 9, 51-73.	0.2	7
298	Preliminary results on the operation of a 2270 kg cryogenic gravitational-wave antenna with a resonant capacitive transducer and a d.c. SQUID amplifier. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1986, 9, 829-845.	0.2	33
299	Cryogenic system of the Rome group gravitational wave experiment. Cryogenics, 1985, 25, 234-237.	0.9	9
300	Lagrangian formalism for resonant capacitive transducers for gravitational-wave antennas. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1984, 7, 21-34.	0.2	24
301	Initial operation at liquid-helium temperature of theM=2270 kg Al 5056 gravitational-wave antenna of the Rome group. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1984, 7, 338-354.	0.2	20
302	Development and test atT=4.2K of a capacitive resonant transducer for cryogenic gravitational-wave antennas. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1982, 5, 385-408.	0.2	61
303	Mechanical-transfer function and Brownian-noise measurements atT=4.2 K of a small (M=20.3 kg) gravitational-wave antenna using double "four-point―mechanical suspensions. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1981, 4, 408-416.	0.2	2
304	Background of gravitational-wave antennas of possible terrestrial origin—I. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1981, 4, 295-308.	0.2	7
305	An alternative strategy for cooling the mirrors of the gravitational wave interferometers at low temperature. , 0, , .		0