Michael S Waring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 2017, 108, 75-83.	10.0	256
2	Ultrafine particle removal and generation by portable air cleaners. Atmospheric Environment, 2008, 42, 5003-5014.	4.1	166
3	Ten questions concerning the microbiomes of buildings. Building and Environment, 2016, 109, 224-234.	6.9	143
4	Review of indoor aerosol generation, transport, and control in the context of COVIDâ€19. International Forum of Allergy and Rhinology, 2020, 10, 1173-1179.	2.8	126
5	Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources. Atmospheric Environment, 2015, 106, 382-391.	4.1	117
6	Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities. Building and Environment, 2016, 104, 320-336.	6.9	105
7	Particle loading rates for HVAC filters, heat exchangers, and ducts. Indoor Air, 2008, 18, 209-224.	4.3	83
8	Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength. Indoor Air, 2014, 24, 376-389.	4.3	82
9	Indoor Secondary Organic Aerosol Formation Initiated from Reactions between Ozone and Surface-Sorbed <scp>d</scp> -Limonene. Environmental Science & Technology, 2013, 47, 6341-6348.	10.0	75
10	Thirdhand smoke uptake to aerosol particles in the indoor environment. Science Advances, 2018, 4, eaap8368.	10.3	69
11	Secondary organic aerosol formation from ozone reactions with single terpenoids and terpenoid mixtures. Atmospheric Environment, 2011, 45, 4235-4242.	4.1	65
12	Predictions and determinants of size-resolved particle infiltration factors in single-family homes in the U.S Building and Environment, 2014, 74, 106-118.	6.9	65
13	Modeling impacts of dynamic ventilation strategies on indoor air quality of offices in six US cities. Building and Environment, 2013, 60, 243-253.	6.9	64
14	Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene. Atmospheric Environment, 2014, 84, 222-229.	4.1	60
15	Realâ€ŧime transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. Indoor Air, 2017, 27, 230-240.	4.3	60
16	Using multiobjective optimizations to discover dynamic building ventilation strategies that can improve indoor air quality and reduce energy use. Energy and Buildings, 2014, 75, 272-280.	6.7	51
17	An evaluation of the indoor air quality in bars before and after a smoking ban in Austin, Texas. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 260-268.	3.9	47
18	Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments. Indoor Air, 2012, 22, 415-426.	4.3	45

MICHAEL S WARING

#	Article	IF	CITATIONS
19	The effect of an ion generator on indoor air quality in a residential room. Indoor Air, 2011, 21, 267-276.	4.3	41
20	Alternative ventilation strategies in U.S. offices: Saving energy while enhancing work performance, reducing absenteeism, and considering outdoor pollutant exposure tradeoffs. Building and Environment, 2017, 116, 140-157.	6.9	39
21	Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 253-261.	3.9	39
22	Transient Secondary Organic Aerosol Formation from Limonene Ozonolysis in Indoor Environments: Impacts of Air Exchange Rates and Initial Concentration Ratios. Environmental Science & Technology, 2014, 48, 7899-7908.	10.0	36
23	Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Environmental Sciences: Processes and Impacts, 2019, 21, 528-547.	3.5	36
24	Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. Environmental Sciences: Processes and Impacts, 2019, 21, 1240-1254.	3.5	36
25	Interplay of ventilation and filtration: Differential analysis of cost function combining energy use and indoor exposure to PM 2.5 and ozone. Building and Environment, 2018, 128, 320-335.	6.9	35
26	Human occupant contribution to secondary aerosol mass in the indoor environment. Environmental Sciences: Processes and Impacts, 2019, 21, 1301-1312.	3.5	32
27	Do timeâ€averaged, wholeâ€building, effective volatile organic compound (<scp>VOC</scp>) emissions depend on the air exchange rate? A statistical analysis of trends for 46 <scp>VOC</scp> s in <scp>U</scp> . <scp>S</scp> . offices. Indoor Air, 2016, 26, 642-659.	4.3	30
28	Indoor-Biofilter Growth and Exposure to Airborne Chemicals Drive Similar Changes in Plant Root Bacterial Communities. Applied and Environmental Microbiology, 2014, 80, 4805-4813.	3.1	28
29	Indoor transient SOA formation from ozone+α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis. Atmospheric Environment, 2015, 112, 106-115.	4.1	28
30	Perceptions in the U.S. building industry of the benefits and costs of improving indoor air quality. Indoor Air, 2016, 26, 318-330.	4.3	28
31	Reactive indoor air chemistry and health—A workshop summary. International Journal of Hygiene and Environmental Health, 2017, 220, 1222-1229.	4.3	28
32	Sensor networks for routine indoor air quality monitoring in buildings: Impacts of placement, accuracy, and number of sensors. Science and Technology for the Built Environment, 2018, 24, 188-197.	1.7	28
33	Alternative ventilation strategies in U.S. offices: Comprehensive assessment and sensitivity analysis of energy saving potential. Building and Environment, 2017, 116, 30-44.	6.9	26
34	Improving airflow measurement accuracy in VAV terminal units using flow conditioners. Building and Environment, 2014, 71, 81-94.	6.9	23
35	Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments. Atmospheric Environment, 2016, 144, 79-86.	4.1	23
36	Measuring the efficacy of HVAC particle filtration over a range of ventilation rates in an office building. Building and Environment, 2018, 144, 648-656.	6.9	23

#	Article	IF	CITATIONS
37	Understanding the Spatial Heterogeneity of Indoor OH and HO ₂ due to Photolysis of HONO Using Computational Fluid Dynamics Simulation. Environmental Science & Technology, 2019, 53, 14470-14478.	10.0	21
38	Optimizing ventilation: Theoretical study on increasing rates in offices to maximize occupant productivity with constrained additional energy use. Building and Environment, 2019, 166, 106314.	6.9	21
39	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Sciences: Processes and Impacts, 2020, 22, 2031-2057.	3.5	20
40	Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the twoâ€dimensional volatility basis set (2D― <scp>VBS</scp>). Indoor Air, 2019, 29, 616-629.	4.3	17
41	Secondary organic aerosol formation initiated by <i>α</i> â€ŧerpineol ozonolysis in indoor air. Indoor Air, 2016, 26, 939-952.	4.3	16
42	Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models. Atmospheric Environment, 2020, 240, 117784.	4.1	16
43	Fungal Signature of Moisture Damage in Buildings: Identification by Targeted and Untargeted Approaches with Mycobiome Data. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
44	Statistical analysis of wind data using Weibull distribution for natural ventilation estimation. Science and Technology for the Built Environment, 2018, 24, 922-932.	1.7	10
45	Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients. Environmental Science & Technology, 2021, 55, 9000-9011.	10.0	10
46	Considerations for the Safe Operation of Schools During the Coronavirus Pandemic. Frontiers in Public Health, 2021, 9, 751451.	2.7	9
47	Simplified daily models for estimating energy consumption impacts of changing office building ventilation rates. Building and Environment, 2018, 127, 250-255.	6.9	6
48	Outcomeâ€based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions. Indoor Air, 2018, 28, 585-603.	4.3	6
49	Predicting the evolution of secondary organic aerosol (SOA) size distributions due to limonene ozonolysis in indoor environments. Building and Environment, 2016, 108, 252-262.	6.9	4
50	Harnessing the power of healthy buildings research to advance health for all. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 217-218.	3.9	2