Yanzhuang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288357/publications.pdf

Version: 2024-02-01

94433 106344 5,613 70 37 65 citations g-index h-index papers 129 129 129 6274 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Golgi Metal Ion Homeostasis in Human Health and Diseases. Cells, 2022, 11, 289.	4.1	13
2	GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cellular and Molecular Life Sciences, 2022, 79, 199.	5.4	11
3	GRASP55 regulates the unconventional secretion and aggregation of mutant huntingtin. Journal of Biological Chemistry, 2022, 298, 102219.	3.4	14
4	Adaptor-Specific Antibody Fragment Inhibitors for the Intracellular Modulation of p97 (VCP) Protein–Protein Interactions. Journal of the American Chemical Society, 2022, 144, 13218-13225.	13.7	9
5	A ÂconservedÂubiquitin- and ESCRT-dependent pathway internalizes human lysosomal membrane proteinsÂfor degradation. PLoS Biology, 2021, 19, e3001361.	5.6	22
6	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 5	42 Td (editior 1,430
7	Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Frontiers in Cell and Developmental Biology, 2021, 9, 806482.	3.7	31
8	Structural Interaction of Apolipoprotein A-I Mimetic Peptide with Amyloid-Î ² Generates Toxic Hetero-oligomers. Journal of Molecular Biology, 2020, 432, 1020-1034.	4.2	25
9	Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond. Trends in Biochemical Sciences, 2020, 45, 1065-1079.	7.5	38
10	Hydrogen peroxide induces Arl1 degradation and impairs Golgi-mediated trafficking. Molecular Biology of the Cell, 2020, 31, 1931-1942.	2.1	13
11	Cytosolic Ca2+ Modulates Golgi Structure Through PKCα-Mediated GRASP55 Phosphorylation. IScience, 2020, 23, 100952.	4.1	28
12	Editorial: Golgi Dynamics in Physiological and Pathological Conditions. Frontiers in Cell and Developmental Biology, 2020, 8, 7.	3.7	5
13	Golgi organization is regulated by proteasomal degradation. Nature Communications, 2020, 11, 409.	12.8	73
14	Cytosolic Ca ²⁺ modulates Golgi structure through PKCâ€mediated GRASP55 phosphorylation. FASEB Journal, 2020, 34, 1-1.	0.5	1
15	New Insights Into the Golgi Stacking Proteins. Frontiers in Cell and Developmental Biology, 2019, 7, 131.	3.7	31
16	SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly. Journal of Cell Science, 2019, 132, .	2.0	4
17	GORASP2/GRASP55 collaborates with the PtdIns3K UVRAG complex to facilitate autophagosome-lysosome fusion. Autophagy, 2019, 15, 1787-1800.	9.1	46
18	DjA1 maintains Golgi integrity via interaction with GRASP65. Molecular Biology of the Cell, 2019, 30, 478-490.	2.1	13

#	Article	IF	Citations
19	GRASP depletion–mediated Golgi destruction decreases cell adhesion and migration via the reduction of α5β1 integrin. Molecular Biology of the Cell, 2019, 30, 766-777.	2.1	30
20	Golgi Structure and Function in Health, Stress, and Diseases. Results and Problems in Cell Differentiation, 2019, 67, 441-485.	0.7	69
21	GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion. Developmental Cell, 2018, 45, 245-261.e6.	7.0	108
22	Alzheimer's amyloid-beta intermediates generated using polymer-nanodiscs. Chemical Communications, 2018, 54, 12883-12886.	4.1	69
23	GRASP55 facilitates autophagosome maturation under glucose deprivation. Molecular and Cellular Oncology, 2018, 5, e1494948.	0.7	13
24	The Golgi stacking protein GORASP2/GRASP55 serves as an energy sensor to promote autophagosome maturation under glucose starvation. Autophagy, 2018, 14, 1649-1651.	9.1	24
25	Gastric Acid Secretion from Parietal Cells Is Mediated by a Ca2+ Efflux Channel in the Tubulovesicle. Developmental Cell, 2017, 41, 262-273.e6.	7.0	42
26	Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Molecular Biology of the Cell, 2017, 28, 2833-2842.	2.1	88
27	Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Research, 2017, 6, 2050.	1.6	71
28	Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle. Developmental Cell, 2016, 38, 73-85.	7.0	43
29	Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking. Molecular Biology of the Cell, 2016, 27, 137-152.	2.1	43
30	Glycosylation Quality Control by the Golgi Structure. Journal of Molecular Biology, 2016, 428, 3183-3193.	4.2	105
31	Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. Journal of Clinical Investigation, 2016, 127, 117-131.	8.2	75
32	Golgi fragmentation in Alzheimer's disease. Frontiers in Neuroscience, 2015, 9, 340.	2.8	82
33	Golgi Isolation. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot075911.	0.3	7
34	Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease. BioEssays, 2015, 37, 240-247.	2.5	60
35	Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly. Molecular Biology of the Cell, 2015, 26, 2242-2251.	2.1	29
36	Altered cofactor regulation with disease-associated p97/VCP mutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1705-14.	7.1	87

3

#	Article	IF	CITATIONS
37	GRASPs in Golgi Structure and Function. Frontiers in Cell and Developmental Biology, 2015, 3, 84.	3.7	67
38	Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. Journal of Cell Science, 2014, 127, 172-81.	2.0	16
39	Aβ-induced Golgi fragmentation in Alzheimer's disease enhances Aβ production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1230-9.	7.1	142
40	Cell cycle regulation of Golgi membrane dynamics. Trends in Cell Biology, 2013, 23, 296-304.	7.9	85
41	Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nature Communications, 2013, 4, 1659.	12.8	157
42	Ubiquitin and cell cycle regulation of Golgi membrane dynamics. FASEB Journal, 2013, 27, 553.2.	0.5	0
43	HACE1 (HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2013, 2013, 333-336.	0.1	0
44	Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biology Open, 2012, 1, 1204-1214.	1.2	51
45	Quantitative Analysis of Liver Golgi Proteome in the Cell Cycle. Methods in Molecular Biology, 2012, 909, 125-140.	0.9	9
46	Proteomic Identification of S-Nitrosylated Golgi Proteins: New Insights into Endothelial Cell Regulation by eNOS-Derived NO. PLoS ONE, 2012, 7, e31564.	2.5	25
47	The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle. Nature Communications, 2011, 2, 501.	12.8	51
48	New components of the Golgi matrix. Cell and Tissue Research, 2011, 344, 365-379.	2.9	38
49	Golgi Biogenesis. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005330-a005330.	5.5	68
50	Identification of GRASP65â€interacting proteins and characterization of their roles in Golgi cisternal stacking. FASEB Journal, 2011, 25, 931.1.	0.5	0
51	The Role of GRASP65 in Golgi Cisternal Stacking and Cell Cycle Progression. Traffic, 2010, 11, 827-842.	2.7	76
52	Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system. Nature Protocols, 2010, 5, 758-772.	12.0	49
53	GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. Journal of Cell Biology, 2010, 188, 237-251.	5.2	171
54	Quantitative Proteomics Analysis of Cell Cycle-regulated Golgi Disassembly and Reassembly. Journal of Biological Chemistry, 2010, 285, 7197-7207.	3.4	39

#	Article	IF	CITATIONS
55	Peroxisome Proliferator-Activated Receptor δRegulation of miR-15a in Ischemia-Induced Cerebral Vascular Endothelial Injury. Journal of Neuroscience, 2010, 30, 6398-6408.	3.6	185
56	Direct Selection of Monoclonal Phosphospecific Antibodies without Prior Phosphoamino Acid Mapping. Journal of Biological Chemistry, 2009, 284, 20791-20795.	3.4	21
57	Golgi apparatus inheritance. , 2008, , 580-607.		11
58	Molecular Mechanism of Mitotic Golgi Disassembly and Reassembly Revealed by a Defined Reconstitution Assay. Journal of Biological Chemistry, 2008, 283, 6085-6094.	3.4	58
59	ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. Journal of Cell Biology, 2008, 182, 837-843.	5. 2	154
60	Golgi Cisternal Unstacking Stimulates COPI Vesicle Budding and Protein Transport. PLoS ONE, 2008, 3, e1647.	2.5	66
61	Active ADP-ribosylation Factor-1 (ARF1) Is Required for Mitotic Golgi Fragmentation. Journal of Biological Chemistry, 2007, 282, 21829-21837.	3.4	36
62	Mapping the Functional Domains of the Golgi Stacking Factor GRASP65. Journal of Biological Chemistry, 2005, 280, 4921-4928.	3.4	132
63	VCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments. Journal of Cell Biology, 2004, 164, 973-978.	5. 2	142
64	Correction: VCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments. Journal of Cell Biology, 2004, 166, 433-433.	5. 2	1
65	Golginâ€84 is a rab1 Binding Partner Involved in Golgi Structure. Traffic, 2003, 4, 153-161.	2.7	111
66	A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO Journal, 2003, 22, 3279-3290.	7.8	169
67	Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO Journal, 2002, 21, 5645-5652.	7.8	316
68	Cholesterol is Required for the Formation of Regulated and Constitutive Secretory Vesicles from the <i>trans</i>	2.7	126
69	Characterization of the Extra-large G Protein α-Subunit XLαs. Journal of Biological Chemistry, 2000, 275, 33622-33632.	3.4	108
70	Biogenesis of Neurosecretory Vesicles. Cold Spring Harbor Symposia on Quantitative Biology, 1995, 60, 315-327.	1.1	45