Xudong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3288253/publications.pdf Version: 2024-02-01

XUDONC 7HAO

#	Article	IF	CITATIONS
1	Stability and Stabilization of Switched Linear Systems With Mode-Dependent Average Dwell Time. IEEE Transactions on Automatic Control, 2012, 57, 1809-1815.	5.7	971
2	Stability of switched positive linear systems with average dwell time switching. Automatica, 2012, 48, 1132-1137.	5.0	596
3	Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica, 2014, 50, 1825-1834.	5.0	515
4	Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica, 2015, 60, 193-200.	5.0	381
5	Adaptive tracking control for a class of uncertain switched nonlinear systems. Automatica, 2015, 52, 185-191.	5.0	359
6	Switching Stabilization for a Class of Slowly Switched Systems. IEEE Transactions on Automatic Control, 2015, 60, 221-226.	5.7	295
7	New Results on Stability of Slowly Switched Systems: A Multiple Discontinuous Lyapunov Function Approach. IEEE Transactions on Automatic Control, 2017, 62, 3502-3509.	5.7	288
8	Fault-Tolerant Control for Nonlinear Markovian Jump Systems via Proportional and Derivative Sliding Mode Observer Technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 2755-2764.	5.4	276
9	Fuzzy Approximation Based Asymptotic Tracking Control for a Class of Uncertain Switched Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2020, 28, 632-644.	9.8	240
10	Novel Stability Criteria for TS Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 2014, 22, 313-323.	9.8	214
11	Adaptive Fuzzy Finite-Time Control of Nonlinear Systems With Actuator Faults. IEEE Transactions on Cybernetics, 2020, 50, 1786-1797.	9.5	205
12	Improved results on stability of continuous-time switched positive linear systems. Automatica, 2014, 50, 614-621.	5.0	198
13	Stability of a class of switched positive linear timeâ€delay systems. International Journal of Robust and Nonlinear Control, 2013, 23, 578-589.	3.7	185
14	Stabilization for a Class of Switched Nonlinear Systems With Novel Average Dwell Time Switching by T–S Fuzzy Modeling. IEEE Transactions on Cybernetics, 2016, 46, 1952-1957.	9.5	185
15	Adaptive Fuzzy Hierarchical Sliding-Mode Control for a Class of MIMO Nonlinear Time-Delay Systems With Input Saturation. IEEE Transactions on Fuzzy Systems, 2017, 25, 1062-1077.	9.8	175
16	Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems. IEEE Transactions on Cybernetics, 2016, 46, 1476-1483.	9.5	167
17	Optimal control of Boolean control networks with average cost: A policy iteration approach. Automatica, 2019, 100, 378-387.	5.0	146
18	Quantized Nonstationary Filtering of Networked Markov Switching RSNSs: A Multiple Hierarchical Structure Strategy. IEEE Transactions on Automatic Control, 2020, 65, 4816-4823.	5.7	144

#	Article	IF	CITATIONS
19	Adaptive Neural Backstepping Control Design for A Class of Nonsmooth Nonlinear Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1820-1831.	9.3	140
20	New Stability and Stabilization Conditions of Switched Systems with Mode-Dependent Average Dwell Time. Circuits, Systems, and Signal Processing, 2017, 36, 82-98.	2.0	138
21	Fuzzy-Approximation-Based Adaptive Output-Feedback Control for Uncertain Nonsmooth Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2018, 26, 3847-3859.	9.8	138
22	Event-Triggered Dynamic Output Feedback Control for Switched Systems With Frequent Asynchronism. IEEE Transactions on Automatic Control, 2020, 65, 3120-3127.	5.7	137
23	Robust Control of Continuous-Time Systems With State-Dependent Uncertainties and Its Application to Electronic Circuits. IEEE Transactions on Industrial Electronics, 2014, 61, 4161-4170.	7.9	133
24	Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1976-1982.	11.3	133
25	Control of Switched Nonlinear Systems via T–S Fuzzy Modeling. IEEE Transactions on Fuzzy Systems, 2016, 24, 235-241.	9.8	130
26	Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear systems with input saturation. Journal of the Franklin Institute, 2020, 357, 11518-11544.	3.4	130
27	Improved stability criteria for switched positive linear systems with average dwell time switching. Journal of the Franklin Institute, 2017, 354, 3472-3484.	3.4	129
28	Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems With Time Delay. IEEE Transactions on Cybernetics, 2016, 46, 1337-1349.	9.5	125
29	Finite-Time-Prescribed Performance-Based Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems With Dynamic Uncertainty and Actuator Faults. IEEE Transactions on Cybernetics, 2022, 52, 6959-6971.	9.5	121
30	Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays. Information Sciences, 2017, 399, 219-238.	6.9	120
31	Small-Gain Technique-Based Adaptive Neural Output-Feedback Fault-Tolerant Control of Switched Nonlinear Systems With Unmodeled Dynamics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7051-7062.	9.3	117
32	Stability Analysis and Delay Control for Switched Positive Linear Systems. IEEE Transactions on Automatic Control, 2018, 63, 2184-2190.	5.7	116
33	Multiple-Mode Observer Design for a Class of Switched Linear Systems. IEEE Transactions on Automation Science and Engineering, 2015, 12, 272-280.	5.2	115
34	Observer-based fuzzy adaptive stabilization of uncertain switched stochastic nonlinear systems with input quantization. Journal of the Franklin Institute, 2019, 356, 1789-1809.	3.4	109
35	Observer-based adaptive fuzzy tracking control of MIMO switched nonlinear systems preceded by unknown backlash-like hysteresis. Information Sciences, 2019, 490, 369-386.	6.9	109
36	Asynchronously switched control of a class of slowly switched linear systems. Systems and Control Letters, 2012, 61, 1151-1156.	2.3	108

#	Article	IF	CITATIONS
37	Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full-state constraints and asymmetric input saturation. International Journal of Systems Science, 2022, 53, 199-221.	5.5	107
38	Adaptive Fuzzy Tracking Control for a Class of Uncertain Switched Nonlinear Systems with Multiple Constraints: A Small-Gain Approach. International Journal of Fuzzy Systems, 2019, 21, 2609-2624.	4.0	104
39	Delay-dependent observer-based finite-time control for switched systems with time-varying delay. Nonlinear Analysis: Hybrid Systems, 2012, 6, 885-898.	3.5	100
40	Adaptive neural control for switched nonlinear systems with unknown backlash-like hysteresis and output dead-zone. Neurocomputing, 2019, 357, 203-214.	5.9	97
41	Finite-time stabilization and boundedness of switched linear system under state-dependent switching. Journal of the Franklin Institute, 2013, 350, 541-555.	3.4	96
42	Adaptive fault-tolerant control for switched nonlinear systems based on command filter technique. Applied Mathematics and Computation, 2021, 392, 125725.	2.2	90
43	Adaptive-Critic Design for Decentralized Event-Triggered Control of Constrained Nonlinear Interconnected Systems Within an Identifier-Critic Framework. IEEE Transactions on Cybernetics, 2022, 52, 7478-7491.	9.5	89
44	Adaptive Neural Hierarchical Sliding Mode Control of Nonstrict-Feedback Nonlinear Systems and an Application to Electronic Circuits. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1394-1404.	9.3	86
45	Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems. IEEE Transactions on Cybernetics, 2017, 47, 3088-3099.	9.5	85
46	Reduced-Order Observer Design for Switched Descriptor Systems With Unknown Inputs. IEEE Transactions on Automatic Control, 2020, 65, 287-294.	5.7	85
47	Static output feedback control of switched systems with quantization: A nonhomogeneous sojourn probability approach. International Journal of Robust and Nonlinear Control, 2019, 29, 5992-6005.	3.7	84
48	Finite-time Hâ^ž control of switched systems with mode-dependent average dwell time. Journal of the Franklin Institute, 2014, 351, 1301-1315.	3.4	81
49	Observer-based adaptive neural tracking control for output-constrained switched MIMO nonstrict-feedback nonlinear systems with unknown dead zone. Nonlinear Dynamics, 2020, 99, 1019-1036.	5.2	79
50	Bumpless Transfer <i>H</i> â^ž Anti-Disturbance Control of Switching Markovian LPV Systems Under the Hybrid Switching. IEEE Transactions on Cybernetics, 2022, 52, 2833-2845.	9.5	79
51	Adaptive finite-time output-feedback control design for switched pure-feedback nonlinear systems with average dwell time. Nonlinear Analysis: Hybrid Systems, 2020, 37, 100908.	3.5	79
52	A new control method for state-constrained nonlinear switched systems with application to chemical process. International Journal of Control, 2015, 88, 1693-1701.	1.9	78
53	State-dependent switching control of switched positive fractional-order systems. ISA Transactions, 2016, 62, 103-108.	5.7	75
54	Interval Type-2 Fuzzy Sampled-Data \$H_{infty }\$ Control for Nonlinear Unreliable Networked Control Systems. IEEE Transactions on Fuzzy Systems, 2020, 28, 1434-1448.	9.8	75

#	Article	IF	CITATIONS
55	Observerâ€based adaptive fuzzy hierarchical sliding mode control of uncertain underâ€actuated switched nonlinear systems with input quantization. International Journal of Robust and Nonlinear Control, 2022, 32, 8163-8185.	3.7	75
56	A Stochastic Sampling Consensus Protocol of Networked Euler–Lagrange Systems With Application to Two-Link Manipulator. IEEE Transactions on Industrial Informatics, 2015, 11, 907-914.	11.3	74
57	Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time. Applied Mathematics and Computation, 2020, 365, 124665.	2.2	72
58	Command Filter-Based Adaptive Neural Control Design for Nonstrict-Feedback Nonlinear Systems With Multiple Actuator Constraints. IEEE Transactions on Cybernetics, 2022, 52, 12561-12570.	9.5	68
59	Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via reinforcement learning. Neural Networks, 2022, 154, 43-55.	5.9	68
60	Asynchronous finite-time control for switched linear systems via mode-dependent dynamic state-feedback. Nonlinear Analysis: Hybrid Systems, 2013, 8, 109-120.	3.5	66
61	Fuzzy \$mathcal {H}_{infty }\$ Output Feedback Control for Nonlinear NCSs With Quantization and Stochastic Communication Protocol. IEEE Transactions on Fuzzy Systems, 2021, 29, 2623-2634.	9.8	66
62	Model-Based adaptive event-Triggered control of nonlinear continuous-Time systems. Applied Mathematics and Computation, 2021, 408, 126330.	2.2	66
63	Stabilization of switched linear systems via admissible edge-dependent switching signals. Nonlinear Analysis: Hybrid Systems, 2018, 29, 100-109.	3.5	63
64	New robust delay-dependent stability and Hâ^ž analysis for uncertain Markovian jump systems with time-varying delays. Journal of the Franklin Institute, 2010, 347, 863-874.	3.4	62
65	Singleâ€network ADP for solving optimal eventâ€ŧriggered tracking control problem of completely unknown nonlinear systems. International Journal of Intelligent Systems, 2021, 36, 4795-4815.	5.7	62
66	Weighted <i>H</i> _{â^ž} performance analysis of switched linear systems with mode-dependent average dwell time. International Journal of Systems Science, 2013, 44, 2130-2139.	5.5	61
67	Adaptive Fuzzy Tracking Control of Switched MIMO Nonlinear Systems With Full State Constraints and Unknown Control Directions. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2912-2916.	3.0	61
68	Eventâ€triggered adaptive tracking control for uncertain fractionalâ€order nonstrictâ€feedback nonlinear systems via command filtering. International Journal of Robust and Nonlinear Control, 2022, 32, 7987-8011.	3.7	61
69	Adaptive neural decentralised control for switched interconnected nonlinear systems with backlash-like hysteresis and output constraints. International Journal of Systems Science, 2022, 53, 1545-1561.	5.5	58
70	Adaptive Decentralized Asymptotic Tracking Control for Large-Scale Nonlinear Systems With Unknown Strong Interconnections. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 173-186.	13.1	56
71	Distributed Consensus of Multiple Euler–Lagrange Systems Networked by Sampled-Data Information With Transmission Delays and Data Packet Dropouts. IEEE Transactions on Automation Science and Engineering, 2017, 14, 1440-1450.	5.2	54
72	Absolute exponential stability and stabilization of switched nonlinear systems. Systems and Control Letters, 2014, 66, 51-57.	2.3	48

#	Article	IF	CITATIONS
73	Adaptive neural finite-time hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with backlash-like hysteresis. Information Sciences, 2022, 599, 147-169.	6.9	48
74	Finite-Time Stability and Stabilization of Fractional Order Positive Switched Systems. Circuits, Systems, and Signal Processing, 2016, 35, 2450-2470.	2.0	47
75	An Input Delay Approach to Interval Type-2 Fuzzy Exponential Stabilization for Nonlinear Unreliable Networked Sampled-Data Control Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 3488-3497.	9.3	47
76	Observer Design and Unknown Input Reconstruction for a Class of Switched Descriptor Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1411-1419.	9.3	45
77	Fuzzy Energy-to-Peak Filtering for Continuous-Time Nonlinear Singular System. IEEE Transactions on Fuzzy Systems, 2022, 30, 2325-2336.	9.8	44
78	Hierarchical Sliding-Mode Surface-Based Adaptive Actor–Critic Optimal Control for Switched Nonlinear Systems With Unknown Perturbation. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 1559-1571.	11.3	44
79	Robust Tube-Based Model Predictive Control for Lane Change Maneuver of Tractor-Trailer Vehicles Based on a Polynomial Trajectory. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 5180-5188.	9.3	43
80	L 1 /â,," 1 -Gain analysis and synthesis of Markovian jump positive systems with time delay. ISA Transactions, 2016, 63, 93-102.	5.7	42
81	Data-driven-based event-triggered optimal control of unknown nonlinear systems with input constraints. Nonlinear Dynamics, 2022, 109, 891-909.	5.2	42
82	Discussions on observer design of nonlinear positive systems via T–S fuzzy modeling. Neurocomputing, 2015, 157, 70-75.	5.9	41
83	<i>>p</i> â€Times differentiable unbounded functions for robust control of uncertain switched nonlinear systems with tracking constraints. International Journal of Robust and Nonlinear Control, 2015, 25, 2965-2983.	3.7	40
84	New approaches to positive observer design for discrete-time positive linear systems. Journal of the Franklin Institute, 2018, 355, 4336-4350.	3.4	40
85	Output Reachable Set Synthesis of Event-Triggered Control for Singular Markov Jump Systems Under Multiple Cyber-Attacks. IEEE/ACM Transactions on Networking, 2022, 30, 2849-2857.	3.8	40
86	<pre><mml:math altimg="si32.gif" display="inline" id="mml32" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></pre>	:m 2 x8/mn	nl:maeow>
87	A review on carrier aircraft dispatch path planning and control on deck. Chinese Journal of Aeronautics, 2020, 33, 3039-3057.	5.3	39
88	Smallâ€gain techniqueâ€based adaptive fuzzy command filtered control for uncertain nonlinear systems with unmodeled dynamics and disturbances. International Journal of Adaptive Control and Signal Processing, 2021, 35, 1664-1684.	4.1	39
89	<pre><mml:math altimg="si3.svg" display="inline" id="d1e148" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></pre>	:mŋ> <td>nl:mgow></td>	nl:mgow>
90	Absolute exponential L 1 -gain analysis and synthesis of switched nonlinear positive systems with time-varying delay. Applied Mathematics and Computation, 2016, 284, 24-36.	2.2	38

#		IF	CITATIONS
91	altimg="si3.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>ma.₅<td> :::≋®ow></td></td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub>	m a. ₅ <td> :::≋®ow></td>	: ::≋® ow>
92	Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance. Applied Mathematics and Computation, 2021, 408, 126344.	2.2	38
93	Stability and \$1_2\$ -Gain Analysis of Discrete-Time Switched Systems with Mode-Dependent Average Dwell Time. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2305-2314.	9.3	36
94	Adaptive neural tracking control for a class of switched uncertain nonlinear systems. Neurocomputing, 2015, 168, 320-326.	5.9	35
95	Adaptive output-feedback neural tracking control for a class of nonstrict-feedback nonlinear systems. Information Sciences, 2016, 334-335, 205-218.	6.9	35
96	Adaptive fuzzy tracking control for a class of high-order switched uncertain nonlinear systems. Journal of the Franklin Institute, 2017, 354, 6567-6587.	3.4	35
97	Interval observer design method for asynchronous switched systems. IET Control Theory and Applications, 2020, 14, 1082-1090.	2.1	35
98	Event-Triggered Optimal Control for Discrete-Time Switched Nonlinear Systems With Constrained Control Input. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7850-7859.	9.3	35
99	Control Synthesis of Switched Systems. Studies in Systems, Decision and Control, 2017, , .	1.0	34
100	Fuzzy Resilient \$mathcal {H}_infty\$ Filter Design for Continuous-Time Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 591-596.	9.8	33
101	Delay-dependent global exponential stability for neural networks with time-varying delay. Neurocomputing, 2019, 338, 172-180.	5.9	32
102	Linear programmingâ€based robust model predictive control for positive systems. IET Control Theory and Applications, 2016, 10, 1789-1797.	2.1	29
103	An improved approach to controller design of positive systems using controller gain decomposition. Journal of the Franklin Institute, 2017, 354, 1356-1373.	3.4	29
104	Stability analysis of discrete-time switched linear systems with unstable subsystems. Applied Mathematics and Computation, 2016, 273, 718-725.	2.2	28
105	Stability analysis of discrete-time switched systems: a switched homogeneous Lyapunov function method. International Journal of Control, 2016, 89, 297-305.	1.9	28
106	Adaptive neural tracking control for a class of uncertain switched nonlinear systems with unknown backlash-like hysteresis control input. Neurocomputing, 2017, 219, 50-58.	5.9	28
107	Real-Time Reachable Set Control for Neutral Singular Markov Jump Systems With Mixed Delays. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1367-1371.	3.0	28
108	Estimator design of discrete-time switched positive linear systems with average dwell time. Journal of the Franklin Institute, 2014, 351, 579-588.	3.4	27

#	Article	IF	CITATIONS
109	Further results on stability and stabilisation of switched positive systems. IET Control Theory and Applications, 2015, 9, 2132-2139.	2.1	27
110	Absolute exponential stability of switched nonlinear time-delay systems. Journal of the Franklin Institute, 2016, 353, 1249-1267.	3.4	25
111	Robust impulsive reset observers of a class of switched nonlinear systems with unknown inputs. Journal of the Franklin Institute, 2017, 354, 2924-2943.	3.4	25
112	Fuzzy outputâ€feedback control for nonâ€linear systems with input timeâ€varying delay. IET Control Theory and Applications, 2014, 8, 738-745.	2.1	24
113	Distributed adaptive attitude synchronization for spacecraft formation flying with sampled-data information flows. Journal of the Franklin Institute, 2015, 352, 2796-2809.	3.4	24
114	Stability analysis of switched systems with extended average dwell time. Transactions of the Institute of Measurement and Control, 2018, 40, 1425-1434.	1.7	24
115	Stability and L1-gain analysis for switched positive T–S fuzzy systems under asynchronous switching. Journal of the Franklin Institute, 2018, 355, 5912-5927.	3.4	24
116	Delay-dependent stability criterion and Hâ^ž analysis for Markovian jump systems with time-varying delays. Asian Journal of Control, 2011, 13, 232-239.	3.0	23
117	Event-trigger-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems. ISA Transactions, 2022, 124, 301-310.	5.7	23
118	Stability of switched positive linear timeâ€delay systems. IET Control Theory and Applications, 2019, 13, 912-919.	2.1	23
119	Functional interval observer for discrete-time systems with disturbances. Applied Mathematics and Computation, 2020, 383, 125352.	2.2	23
120	Delay-dependent H â^ž performance analysis for Markovian jump systems with mode-dependent time varying delays and partially known transition rates. International Journal of Control, Automation and Systems, 2010, 8, 482-489.	2.7	22
121	Stabilization of jump linear systems with modeâ€dependent timeâ€varying delays. Optimal Control Applications and Methods, 2011, 32, 139-152.	2.1	21
122	Stabilisation and â"‹â^ž control for switched port-controlled Hamiltonian systems with unstable modes and actuator saturation. International Journal of Systems Science, 2020, 51, 1-19.	5.5	21
123	A Simultaneous Planning and Control Method Integrating APF and MPC to Solve Autonomous Navigation for USVs in Unknown Environments. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105, .	3.4	21
124	Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved Bayesian belief method. Neurocomputing, 2014, 133, 309-316.	5.9	20
125	On robust control of continuous-time systems with state-dependent uncertainties and its application to mechanical systems. ISA Transactions, 2016, 60, 12-20.	5.7	20
126	Asynchronous Decentralized Event-Triggered Control for Switched Large-Scale Systems Subject to Data Congestions and Disorders. IEEE Systems Journal, 2021, 15, 2541-2552.	4.6	20

#	Article	IF	CITATIONS
127	A novel approach to stability analysis for switched positive linear systems. Journal of the Franklin Institute, 2014, 351, 3883-3898.	3.4	19
128	Fuzzy Tracking Control for Switched Uncertain Nonlinear Systems With Unstable Inverse Dynamics. IEEE Transactions on Fuzzy Systems, 2018, 26, 1066-1072.	9.8	19
129	Peak-to-Peak Filtering for Discrete-Time Singular Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2543-2547.	3.0	19
130	Model-Based Dynamic Event-Triggered Control for Cyber-Physical Systems Subject to Dynamic Quantization and DoS Attacks. IEEE Transactions on Network Science and Engineering, 2022, 9, 2406-2417.	6.4	19
131	Stability and control of discreteâ€time switched systems via oneâ€step ahead Lyapunov function approach. IET Control Theory and Applications, 2018, 12, 1141-1147.	2.1	17
132	Neural-network-based tracking Control for a Class of time-delay nonlinear systems with unmodeled dynamics. Neurocomputing, 2020, 396, 179-190.	5.9	17
133	Stability and \$\$ _{1}\$\$ 1 -Gain Analysis for Switched Delay Positive Systems with Stable and Unstable Subsystems. Circuits, Systems, and Signal Processing, 2015, 34, 1683-1696.	2.0	16
134	Adaptive neural tracking control for a class of uncertain nonstrict-feedback nonlinear systems. Journal of the Franklin Institute, 2017, 354, 6503-6519.	3.4	16
135	Stability of discrete-time switched systems with admissible edge-dependent switching signals. International Journal of Systems Science, 2018, 49, 974-983.	5.5	16
136	Switched Dynamic Systems with Logic Switching and Its Stability Analysis. SIAM Journal on Control and Optimization, 2021, 59, 1188-1217.	2.1	16
137	Fuzzy event-triggered control for nonlinear networked control systems. Journal of the Franklin Institute, 2022, 359, 2593-2607.	3.4	16
138	Stability analysis of fuzzy polynomial positive systems with time delay. , 2014, , .		15
139	Adaptive Control for a Class of Switched Linear Systems Using State-Dependent Switching. Circuits, Systems, and Signal Processing, 2015, 34, 3681-3695.	2.0	15
140	Improved Controller Design for Uncertain Positive Systems and its Extension to Uncertain Positive Switched Systems. Asian Journal of Control, 2018, 20, 159-173.	3.0	15
141	Event-Triggered Control for Networked Switched Systems Subject to Data Asynchronization. IEEE Systems Journal, 2021, 15, 5197-5208.	4.6	15
142	Positioning error guarantee method with two-stage compensation strategy for aircraft flexible assembly tooling. Journal of Manufacturing Systems, 2020, 55, 285-301.	13.9	14
143	Event-Triggered Control for Network-Based Switched Systems With Switching Signals Subject to Dual-Terminal DoS Attacks. IEEE/ACM Transactions on Networking, 2022, 30, 1283-1293.	3.8	14
144	Prescribed Performance-Based Finite-Time Consensus Technology of Nonlinear Multiagent Systems and Application to FDPs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 591-595.	3.0	14

#	Article	IF	CITATIONS
145	Reset stabilisation of positive linear systems. International Journal of Systems Science, 2016, 47, 2773-2782.	5.5	13
146	Dual approach to stability and stabilisation of uncertain switched positive systems. International Journal of Systems Science, 2017, 48, 873-884.	5.5	13
147	Stability and <i>l</i> ₂ â€gain of discreteâ€time switched systems with unstable modes. International Journal of Robust and Nonlinear Control, 2020, 30, 567-586.	3.7	13
148	Finite-time stabilization and <mmi:math <br="" xmins:mmi="http://www.w3.org/1998/Math/MathML">altimg="si5.svg"><mml:msub><mml:mi mathvariant="bold-script">H<mml:mi>â^ž</mml:mi></mml:mi </mml:msub> control for a class of switched nonlinear port-controlled Hamiltonian systems subject to actuator saturation. lournal of the Franklin Institute_2020_357_11807-11829</mmi:math>	3.4	13
149	Real-Time Reachable Set Control for Singular Markov Jump Networked Cascade Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1124-1128.	3.0	13
150	Quantized Dynamic Output Feedback Control and \$L_2\$-Gain Analysis for Networked Control Systems: A Hybrid Approach. IEEE Transactions on Network Science and Engineering, 2021, 8, 575-587.	6.4	13
151	New results on robust control for a class of uncertain systems and its applications to Chua's oscillator. Nonlinear Dynamics, 2016, 84, 1929-1941.	5.2	12
152	LP-based observer design for switched positive linear time-delay systems. Transactions of the Institute of Measurement and Control, 2019, 41, 2419-2427.	1.7	12
153	A Fastly and Slowly Cyclic Switching Strategy for Discrete-Time Cyclic Switched Systems and Its Application to Inverter Circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1173-1177.	3.0	12
154	Stabilization of discrete-time switched singular systems with state, output and switching delays. Journal of the Franklin Institute, 2019, 356, 2060-2089.	3.4	11
155	Design of multipleâ€mode observer and multipleâ€mode controller for switched positive linear systems. IET Control Theory and Applications, 2019, 13, 1320-1328.	2.1	11
156	Direct Adaptive Fuzzy Tracking Control of Non-affine Stochastic Nonlinear Time-Delay Systems. International Journal of Fuzzy Systems, 2021, 23, 309-321.	4.0	11
157	Stochastic finite-time stabilization for discrete-time positive Markov jump time-delay systems. Journal of the Franklin Institute, 2022, 359, 84-103.	3.4	11
158	Stability analysis of reset positive systems with discrete-time triggering conditions. Applied Mathematics Letters, 2015, 39, 80-84.	2.7	10
159	Stability of discrete-time systems with time-varying delay based on switching technique. Journal of the Franklin Institute, 2018, 355, 6026-6044.	3.4	10
160	Point Stabilization Control Method for WIP Vehicles Based on Motion Planning. IEEE Transactions on Industrial Informatics, 2019, 15, 3368-3378.	11.3	10
161	Stability and â,," ₁ -Gain Analysis for Switched Positive Systems With MDADT Based on Quasi-Time-Dependent Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5846-5854.	9.3	10
162	Locating method and motion stroke design of flexible assembly tooling for multiple aircraft components. International Journal of Advanced Manufacturing Technology, 2020, 107, 549-571.	3.0	10

#	Article	IF	CITATIONS
163	Observer design for semi-Markov jump systems with incremental quadratic constraints. Journal of the Franklin Institute, 2021, 358, 5599-5622.	3.4	10
164	Exponential Stability of Discrete-Time Neural Networks With Large Delay. IEEE Transactions on Cybernetics, 2021, 51, 2824-2834.	9.5	9
165	Attitude Control of Rigid Bodies: An Energy-Optimal Geometric Switching Control Approach. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1162-1173.	5.8	9
166	Delay-dependent robust control for uncertain stochastic systems with Markovian switching and multiple delays. Journal of Systems Engineering and Electronics, 2010, 21, 287-295.	2.2	8
167	Tracking and \$\$varvec{H_infty }\$\$ H â^ž control of constrained nonlinear switched systems in strict feedback form. Nonlinear Dynamics, 2015, 80, 87-100.	5.2	8
168	Stabilization of Linear Systems With Input Saturation and Large Delay. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4482-4491.	9.3	8
169	Partial and Global Stabilization at An Attractor for k-valued Logical Control Networks. Journal of the Franklin Institute, 2020, 357, 7003-7019.	3.4	8
170	Stabilization of hybrid systems under state constraints. Nonlinear Analysis: Hybrid Systems, 2021, 40, 101015.	3.5	8
171	An eventâ€ŧriggered integerâ€mixed adaptive dynamic programming for switched nonlinear systems with bounded inputs. International Journal of Robust and Nonlinear Control, 2021, 31, 7280-7297.	3.7	8
172	Neural-Network-Based Adaptive Event-Triggered Asymptotically Consensus Tracking Control for Nonlinear Nonstrict-Feedback MASs: An Improved Dynamic Surface Approach. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 584-597.	11.3	8
173	Finiteâ€time exact tracking control for a class of nonâ€linear dynamical systems. IET Control Theory and Applications, 2017, 11, 2020-2027 Robust filter, design for a class of uncertain systems with < mml:math altimg="si0005.gif"	2.1	7
174	overflow= scroll_xmins:xocs= http://www.elsevier.com/xmi/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.4	6
175	xmins:tb= http://www.elsevier.com/xmi/common/table/dtd xmlns:sb= "http://www.elsevier.com/xml/co Robust adaptive tracking control of uncertain systems with time-varying input delays. International Journal of Systems Science, 2017, 48, 3440-3449.	5.5	6
176	Aero-engine performance optimization based on whale optimization algorithm. , 2017, , .		6
177	New results on the stability of slowly and fastly cyclic switched linear systems. International Journal of Control, 2022, 95, 2056-2065.	1.9	6
178	Stability and <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e272" altimg="si4.svg"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1analysis of nonlinear positive Markov jump systems based on a switching transition probability. ISA Transactions 2022, 121, 86-94</mml:mn></mml:mrow></mml:msub></mml:math>	า l:mธ<i>ร</i>ะ/m r	ml:marow>
179	Prescribed-time observers of LPV systems: A linear matrix inequality approach. Applied Mathematics and Computation, 2021, 398, 125982.	2.2	6
180	Dynamic Event-Triggered Finite-Time <i>H_{â^ž} </i> Tracking Control of Switched LPV Aero-Engine Models, IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1114-1118	3.0	6

#	Article	IF	CITATIONS
181	Security Investment in Cyber-Physical Systems: Stochastic Games With Asymmetric Information and Resource-Constrained Players. IEEE Transactions on Automatic Control, 2022, 67, 5384-5391.	5.7	6
182	Generic Stability Criteria for Switched Nonlinear Systems With Switching-Signal-Based Lyapunov Functions Using Takagi–Sugeno Fuzzy Model. IEEE Transactions on Fuzzy Systems, 2022, 30, 4239-4248.	9.8	6
183	Fuzzy Control of Nonlinear Strict-Feedback Systems With Full-State Constraints: A New Barrier Function Approach. IEEE Transactions on Fuzzy Systems, 2022, 30, 5419-5430.	9.8	6
184	Stability analysis and H <inf>∞</inf> controller design of a class of switched discrete-time fuzzy systems. , 2011, , .		5
185	H â^ž Filtering Design for Linear Systems with Interval Time-Varying Delays. Circuits, Systems, and Signal Processing, 2012, 31, 347-359.	2.0	5
186	Stabilization for delayed positive nonlinear systems via T-S fuzzy modeling. , 2015, , .		5
187	Collaborative distributed design for wireless control systems with Markovianâ€type control network and distributed networkâ€induced time delays. International Journal of Robust and Nonlinear Control, 2018, 28, 5464-5480.	3.7	5
188	Exponential Stability of Delayed Generalized Neural Networks With Intermittent Large-Delay Periods. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7392-7402.	9.3	5
189	Stability Analysis of Discrete-Time Switched Systems With Unstable Modes: An Improved Ratio-Based Tradeoff Approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 431-435.	3.0	5
190	Global stability at a limit cycle for switched multiâ€valued logical networks. Asian Journal of Control, 2021, 23, 860-870.	3.0	5
191	Guaranteed cost stabilization control of discreteâ€ŧime switched systems. IET Control Theory and Applications, 2021, 15, 404-415.	2.1	5
192	New stochastic stability criteria for Markovian jump systems with modeâ€dependent timeâ€varyingâ€delays. International Journal of Intelligent Computing and Cybernetics, 2010, 3, 704-715.	2.7	4
193	Control design for switched port-controlled Hamiltonian systems with unstabilizable modes: An improved mode-dependent average dwell time scheme. Nonlinear Analysis: Hybrid Systems, 2020, 38, 100944.	3.5	4
194	New Results on Finite-Time Stability and Stabilization of Switched Positive Linear Time-Delay Systems. IEEE Access, 2020, 8, 4418-4427.	4.2	4
195	A fast-moving horizon estimation method based on the symplectic pseudospectral algorithm. Transactions of the Institute of Measurement and Control, 2021, 43, 2500-2511.	1.7	4
196	Time-scheduled observer design for switched linear systems with unknown inputs. Science China Information Sciences, 2022, 65, 1.	4.3	4
197	Backstepping-Based Controller Design for Uncertain Switched High-Order Nonlinear Systems via Pl Compensation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7810-7820.	9.3	4
198	New Developments in Sliding Mode Control and Its Applications 2014. Mathematical Problems in Engineering, 2015, 2015, 1-3.	1.1	3

#	Article	IF	CITATIONS
199	Stability analysis of switched positive nonlinear systems: an invariant ray approach. Science China Information Sciences, 2019, 62, 1.	4.3	3
200	Adaptive Optimal Control for Unknown Constrained Nonlinear Systems With a Novel Quasi-Model Network. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2867-2878.	11.3	3
201	Robust filtering for systems with state-dependent uncertainties and application to a class of tunnel diode circuits. , 2013, , .		2
202	Observer-Based Robust Tracking Control for a Class of Switched Nonlinear Cascade Systems. Mathematical Problems in Engineering, 2013, 2013, 1-9.	1.1	2
203	New Developments in Sliding Mode Control and Its Applications. Mathematical Problems in Engineering, 2014, 2014, 1-3.	1.1	2
204	New Trends in Networked Control of Complex Dynamic Systems: Theories and Applications. Mathematical Problems in Engineering, 2014, 2014, 1-5.	1.1	2
205	Adaptive Dynamic Programming for a Class of Two-player Stackelberg Differential Games. , 2020, , .		2
206	Stability and â,,' ₂ -gain analysis based on multiple discontinuous Lyapunov function approaches for switched systems with unstable modes. International Journal of Control, 2022, 95, 2188-2198.	1.9	2
207	Set Stabilization and Optimal Control of Switched Multi-Valued Logical Control Networks With State-Dependent Switching Signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1952-1956.	3.0	2
208	Stability analysis of hybrid time-delay systems using homogeneity property. ISA Transactions, 2022, 129, 128-137.	5.7	2
209	Improved Interval Estimation Method for Cyber-Physical Systems Under Stealthy Deception Attacks. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 1-11.	2.8	2
210	Quantized optimal output feedback control and optimal triggering signal coâ€design for unknown discreteâ€ŧime nonlinear systems. Optimal Control Applications and Methods, 2022, 43, 962-978.	2.1	2
211	Stabilization of a class of slowly switched positive linear systems: State-feedback control. , 2012, , .		1
212	New approaches to positive observer design of linear positive systems. , 2017, , .		1
213	Periodic Event-Triggered Estimation for Networked Control Systems. Electronics (Switzerland), 2021, 10, 2215.	3.1	1
214	Condition Time Series Prediction of Aero-Engine Gas-Path Performance Based on Self-Attention Mechanism. , 2021, , .		1
215	Adaptive tracking control of timeâ€varying delay switched nonstrictâ€feedback nonlinear systems with unknown backlashâ€like hysteresis. International Journal of Adaptive Control and Signal Processing, 0,	4.1	1
216	Fast finiteâ€ŧime adaptive neural faultâ€ŧolerant tracking control for multiâ€input multiâ€output systems with fullâ€state constraints. International Journal of Adaptive Control and Signal Processing, 0, , .	4.1	1

#	Article	IF	CITATIONS
217	Integral input-to-state stability of switched delay systems composed of unstable subsystems. , 2016, , .		0
218	Switching Stabilization of Switched Systems Composed of Unstable Subsystems. Studies in Systems, Decision and Control, 2017, , 41-63.	1.0	0
219	Stability of Discrete-time Switched Positive Linear Systems with Mode-dependent Average Dwell Time. Lecture Notes in Control and Information Sciences, 2019, , 3-10.	1.0	0
220	Conclusions and Future Study Directions. Studies in Systems, Decision and Control, 2017, , 163-164.	1.0	0
221	Stability Analysis of Linear System with Time-Varying Delays via new Negative Conditions for a Quadratic Function. , 2021, , .		0
222	Decomposable dissipativity and stability analysis of hybrid systems. International Journal of Control, 0, , 1-0.	1.9	0
223	Functional interval estimation method for discrete-time switched systems under asynchronous switching. Journal of the Franklin Institute, 2022, 359, 5712-5712.	3.4	0