
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3287488/publications.pdf Version: 2024-02-01

LUAN & HERMOSO

#	Article	IF	CITATIONS
1	Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein PnrA. Journal of Molecular Biology, 2021, 433, 166723.	4.2	2
2	Structural Cues for Understanding eEF1A2 Moonlighting. ChemBioChem, 2021, 22, 374-391.	2.6	8
3	Biochemical and Structural Characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family. Computational and Structural Biotechnology Journal, 2021, 19, 1214-1232.	4.1	17
4	Unconventional Antibacterials and Adjuvants. Accounts of Chemical Research, 2021, 54, 917-929.	15.6	20
5	Binding of non-canonical peptidoglycan controls Vibrio cholerae broad spectrum racemase activity. Computational and Structural Biotechnology Journal, 2021, 19, 1119-1126.	4.1	5
6	First Lanthanide Complex for De Novo Phasing in Native Protein Crystallography at 1 Ã Radiation. ACS Applied Bio Materials, 2021, 4, 4575-4581.	4.6	1
7	Teaching an old dog new tricks: repurposing β-lactams. Trends in Pharmacological Sciences, 2021, 42, 617-619.	8.7	1
8	Integrative structural biology of the penicillin-binding protein-1 from Staphylococcus aureus, an essential component of the divisome machinery. Computational and Structural Biotechnology Journal, 2021, 19, 5392-5405.	4.1	2
9	Catalytic Cycle of Glycoside Hydrolase BglX from <i>Pseudomonas aeruginosa</i> and Its Implications for Biofilm Formation. ACS Chemical Biology, 2020, 15, 189-196.	3.4	11
10	Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae. MBio, 2020, 11, .	4.1	11
11	Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6129-6138.	7.1	40
12	<i>SEQUENCE SLIDER</i> : expanding polyalanine fragments for phasing with multiple side-chain hypotheses. Acta Crystallographica Section D: Structural Biology, 2020, 76, 221-237.	2.3	10
13	Disulfide Engineered Lipase to Enhance the Catalytic Activity: A Structure-Based Approach on BTL2. International Journal of Molecular Sciences, 2019, 20, 5245.	4.1	13
14	Structure of the Large Extracellular Loop of FtsX and Its Interaction with the Essential Peptidoglycan Hydrolase PcsB in Streptococcus pneumoniae. MBio, 2019, 10, .	4.1	35
15	Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11229-11234.	7.1	44
16	The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	40
17	Cold-induced aldimine bond cleavage by Tris in <i>Bacillus subtilis</i> alanine racemase. Organic and Biomolecular Chemistry, 2019, 17, 4350-4358.	2.8	2
18	Pyrrolopyrimidine vs Imidazole-Phenyl-Thiazole Scaffolds in Nonpeptidic Dimerization Inhibitors of <i>Leishmania infantum</i> Trypanothione Reductase. ACS Infectious Diseases, 2019, 5, 873-891.	3.8	26

#	Article	IF	CITATIONS
19	Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division. Nature Communications, 2019, 10, 5567.	12.8	29
20	Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4393-4398.	7.1	31
21	Structural insights into the binding and catalytic mechanisms of the <i>Listeria monocytogenes</i> bacteriophage glycosyl hydrolase PlyP40. Molecular Microbiology, 2018, 108, 128-142.	2.5	12
22	Allostery, Recognition of Nascent Peptidoglycan, and Cross-linking of the Cell Wall by the Essential Penicillin-Binding Protein 2x of <i>Streptococcus pneumoniae</i> . ACS Chemical Biology, 2018, 13, 694-702.	3.4	29
23	Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly. Scientific Reports, 2018, 8, 4110.	3.3	27
24	Three-dimensional structures of Lipoproteins from Streptococcus pneumoniae and Staphylococcus aureus. International Journal of Medical Microbiology, 2018, 308, 692-704.	3.6	11
25	A Structural Dissection of the Active Site of the Lytic Transglycosylase MltE from <i>Escherichia coli</i> . Biochemistry, 2018, 57, 6090-6098.	2.5	2
26	Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination. Acta Crystallographica Section D: Structural Biology, 2018, 74, 290-304.	2.3	30
27	Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant <i>Staphylococcus aureus</i> , Allosteric Communication Network and Enablement of Catalysis. Journal of the American Chemical Society, 2017, 139, 2102-2110.	13.7	65
28	Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Current Opinion in Structural Biology, 2017, 44, 87-100.	5.7	45
29	Muropeptide Binding and the X-ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2017, 139, 1448-1451.	13.7	42
30	Catalytic Cycle of the <i>N</i> -Acetylglucosaminidase NagZ from <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2017, 139, 6795-6798.	13.7	28
31	A single amino acid polymorphism in the glycosyltransferase CpsK defines four Streptococcus suis serotypes. Scientific Reports, 2017, 7, 4066.	3.3	18
32	X-ray Structure of Catenated Lytic Transglycosylase SltB1. Biochemistry, 2017, 56, 6317-6320.	2.5	9
33	Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Scientific Reports, 2017, 7, 16494.	3.3	23
34	Orthologous and Paralogous AmpD Peptidoglycan Amidases from Gram-Negative Bacteria. Microbial Drug Resistance, 2016, 22, 470-476.	2.0	23
35	Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. Scientific Reports, 2016, 6, 38094.	3.3	32
36	Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2016, 11, 1525-1531.	3.4	16

#	Article	IF	CITATIONS
37	Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resistance Updates, 2016, 28, 91-104.	14.4	24
38	Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa. Structure, 2016, 24, 1729-1741.	3.3	27
39	Structural Bioinformatics in Broad-Spectrum Racemases: A New Path in Antimicrobial Research. Current Organic Chemistry, 2016, 20, 1222-1231.	1.6	4
40	Structural insights into the synthesis of FMN in prokaryotic organisms. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2526-2542.	2.5	25
41	Discovery of Antibiotic (<i>E</i>)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3 <i>H</i>)-one. Journal of the American Chemical Society, 2015, 137, 1738-1741.	13.7	116
42	Structure and Function of Choline-Binding Proteins. , 2015, , 207-230.		31
43	Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity. Chemical Communications, 2015, 51, 9324-9327.	4.1	39
44	The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus. Current Medicinal Chemistry, 2015, 22, 1678-1686.	2.4	32
45	Pneumococcal phosphoglycerate kinase interacts with plasminogen and its tissue activator. Thrombosis and Haemostasis, 2014, 112, 401-416.	3.4	37
46	Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 79-90.	2.5	61
47	Penicillinâ€binding protein 2a of methicillinâ€resistant <i>Staphylococcus aureus</i> . IUBMB Life, 2014, 66, 572-577.	3.4	176
48	Structure of the pneumococcal <scp>l</scp> , <scp>d</scp> arboxypeptidase <scp>DacB</scp> and pathophysiological effects of disabled cell wall hydrolases <scp>DacA</scp> and <scp>DacB</scp> . Molecular Microbiology, 2014, 93, 1183-1206.	2.5	37
49	Structure solution with <scp>ARCIMBOLDO</scp> using fragments derived from distant homology models. FEBS Journal, 2014, 281, 4029-4045.	4.7	41
50	The C-terminal extension of bacterial flavodoxin-reductases: Involvement in the hydride transfer mechanism from the coenzyme. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 33-43.	1.0	8
51	A complement to the modern crystallographer's toolbox: caged gadolinium complexes with versatile binding modes. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1506-1516.	2.5	7
52	Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nature Communications, 2014, 5, 3842.	12.8	82
53	Comparative study of two <scp>GH</scp> 19 chitinaseâ€like proteins from <i>HeveaÂbrasiliensis</i> , one exhibiting a novel carbohydrateâ€binding domain. FEBS Journal, 2014, 281, 4535-4554.	4.7	27
54	Peptidoglycan Remodeling by the Coordinated Action of Multispecific Enzymes. Microbial Drug Resistance, 2014, 20, 190-198.	2.0	33

#	Article	IF	CITATIONS
55	Structural Basis for Selective Recognition of Endogenous and Microbial Polysaccharides by Macrophage Receptor SIGN-R1. Structure, 2014, 22, 1595-1606.	3.3	31
56	Crystal structures of Ophiostoma piceae sterol esterase: Structural insights into activation mechanism and product release. Journal of Structural Biology, 2014, 187, 215-222.	2.8	32
57	Disruption of Allosteric Response as an Unprecedented Mechanism of Resistance to Antibiotics. Journal of the American Chemical Society, 2014, 136, 9814-9817.	13.7	93
58	Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of <i>Escherichia coli</i> . ACS Chemical Biology, 2014, 9, 2058-2066.	3.4	41
59	Structural Insights into the Coenzyme Mediated Monomer–Dimer Transition of the Pro-Apoptotic Apoptosis Inducing Factor. Biochemistry, 2014, 53, 4204-4215.	2.5	52
60	Getting CAD in Shape: The Atomic Structure of Human Dihydroorotase Domain. Structure, 2014, 22, 179-181.	3.3	2
61	Escherichia coli LacZ β-galactosidase inhibition by monohydroxy acetylated glycopyranosides: Role of the acetyl groups. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 31-38.	1.8	3
62	Crystal structures of CbpF complexed with atropine and ipratropium reveal clues for the design of novel antimicrobials against Streptococcus pneumoniae. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 129-135.	2.4	10
63	Cell-Wall Remodeling by the Zinc-Protease AmpDh3 from Pseudomonas aeruginosa. Journal of the American Chemical Society, 2013, 135, 12604-12607.	13.7	41
64	Molecular architecture of <i>Streptococcus pneumoniae</i> surface thioredoxinâ€fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Molecular Medicine, 2013, 5, 1852-1870.	6.9	99
65	Reaction Products and the X-ray Structure of AmpDh2, a Virulence Determinant of Pseudomonas aeruginosa. Journal of the American Chemical Society, 2013, 135, 10318-10321.	13.7	38
66	Structural and Phylogenetic Analysis of Rhodobacter capsulatus NifF: Uncovering General Features of Nitrogen-fixation (nif)-Flavodoxins. International Journal of Molecular Sciences, 2013, 14, 1152-1163.	4.1	13
67	Heteroresistance to Fosfomycin Is Predominant in Streptococcus pneumoniae and Depends on the <i>murA1</i> Gene. Antimicrobial Agents and Chemotherapy, 2013, 57, 2801-2808.	3.2	28
68	How allosteric control of <i>Staphylococcus aureus</i> penicillin binding protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16808-16813.	7.1	235
69	Promiscuous enantioselective (â~')-γ-lactamase activity in the Pseudomonas fluorescens esterase I. Organic and Biomolecular Chemistry, 2012, 10, 3388.	2.8	29
70	Semisynthetic peptide–lipase conjugates for improved biotransformations. Chemical Communications, 2012, 48, 9053.	4.1	31
71	Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Molecular Oral Microbiology, 2012, 27, 221-245.	2.7	92
72	High-Resolution Crystal Structure of MltE, an Outer Membrane-Anchored Endolytic Peptidoglycan Lytic Transglycosylase from <i>Escherichia coli</i> . Biochemistry, 2011, 50, 2384-2386.	2.5	39

#	Article	IF	CITATIONS
73	An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: Purification, characterisation and structural modelling. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 127-137.	1.8	21
74	Crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltE from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 161-163.	0.7	8
75	Crystallization and preliminary X-ray diffraction studies of the transcriptional repressor PaaX, the main regulator of the phenylacetic acid degradation pathway in <i>Escherichia coli</i> W. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1278-1280.	0.7	5
76	Crystallization and preliminary X-ray diffraction analysis of phosphoglycerate kinase fromStreptococcus pneumoniae. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1285-1289.	0.7	8
77	Crystal Structures of Bacterial Peptidoglycan Amidase AmpD and an Unprecedented Activation Mechanism. Journal of Biological Chemistry, 2011, 286, 31714-31722.	3.4	49
78	New Alkaloid Antibiotics That Target the DNA Topoisomerase I of Streptococcus pneumoniae. Journal of Biological Chemistry, 2011, 286, 6402-6413.	3.4	51
79	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
80	Crystallization of the pneumococcal autolysin LytC: in-house phasing using novel lanthanide complexes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 448-451.	0.7	3
81	Crystallization and preliminary crystallographic analysis of the catalytic module of endolysin from Cp-7, a phage infecting <i>Streptococcus pneumoniae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 670-673.	0.7	7
82	Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Molecular Microbiology, 2010, 76, 905-917.	2.5	74
83	Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC. Nature Structural and Molecular Biology, 2010, 17, 576-581.	8.2	57
84	Oligomeric State in the Crystal Structure of Modular FAD Synthetase Provides Insights into Its Sequential Catalysis in Prokaryotes. Journal of Molecular Biology, 2010, 400, 218-230.	4.2	40
85	Activation of Bacterial Thermoalkalophilic Lipases Is Spurred by Dramatic Structural Rearrangements. Journal of Biological Chemistry, 2009, 284, 4365-4372.	3.4	196
86	Flavodoxin: A compromise between efficiency and versatility in the electron transfer from Photosystem I to Ferredoxin-NADP+ reductase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 144-154.	1.0	37
87	Characterization of gadolinium complexes for SAD phasing in macromolecular crystallography: application to CbpF. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 823-831.	2.5	8
88	Crystallization and preliminary X-ray diffraction studies of the carbohydrate-recognition domain of SIGN-R1, a receptor for microbial polysaccharides and sialylated antibody on splenic marginal zone macrophages. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1264-1266.	0.7	4
89	Crystallization and preliminary X-ray diffraction studies of FAD synthetase from <i>Corynebacterium ammoniagenes</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1285-1288.	0.7	10
90	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from <i>Streptococcus pneumoniae</i> . EMBO Reports, 2009, 10, 246-251.	4.5	56

#	Article	IF	CITATIONS
91	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from Streptococcus pneumoniae. EMBO Reports, 2009, 10, 413-413.	4.5	2
92	Coenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP(H) oxidoreductase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 199-210.	2.3	18
93	Protein Motifs Involved in Coenzyme Interaction and Enzymatic Efficiency in <i>Anabaena</i> Ferredoxin-NADP ⁺ Reductase,. Biochemistry, 2009, 48, 3109-3119.	2.5	15
94	Discovery of Specific Flavodoxin Inhibitors as Potential Therapeutic Agents against <i>Helicobacter pylori</i> Infection. ACS Chemical Biology, 2009, 4, 928-938.	3.4	48
95	Crystallization of a flavodoxin involved in nitrogen fixation in <i>Rhodobacter capsulatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 375-377.	0.7	3
96	Crystallization and preliminary X-ray diffraction studies of the BTL2 lipase from the extremophilic microorganism <i>Bacillus thermocatenulatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1043-1045.	0.7	7
97	Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose. Biomacromolecules, 2008, 9, 2553-2561.	5.4	98
98	A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Engineering, Design and Selection, 2008, 21, 567-576.	2.1	34
99	Elucidation of the Molecular Recognition of Bacterial Cell Wall by Modular Pneumococcal Phage Endolysin CPL-1. Journal of Biological Chemistry, 2007, 282, 24990-24999.	3.4	61
100	Enhancement of the Stability of a Prolipase from <i>Rhizopus oryzae</i> toward Aldehydes by Saturation Mutagenesis. Applied and Environmental Microbiology, 2007, 73, 7291-7299.	3.1	28
101	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
102	Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin. Archives of Biochemistry and Biophysics, 2007, 467, 206-217.	3.0	24
103	Insights into Molecular Plasticity of Choline Binding Proteins (Pneumococcal Surface Proteins) by SAXS. Journal of Molecular Biology, 2007, 365, 411-424.	4.2	23
104	Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Current Opinion in Microbiology, 2007, 10, 461-472.	5.1	238
105	Mixed Ion Exchange Supports as Useful Ion Exchangers for Protein Purification:Â Purification of Penicillin G Acylase fromEscherichia coli. Biomacromolecules, 2007, 8, 703-707.	5.4	40
106	Improved Stabilization of Genetically Modified Penicillin G Acylase in the Presence of Organic Cosolvents by Co- Immobilization of the Enzyme with Polyethyleneimine. Advanced Synthesis and Catalysis, 2007, 349, 459-464.	4.3	38
107	Crystallization and preliminary X-ray diffraction studies of choline-binding protein F fromStreptococcus pneumoniae. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 742-745.	0.7	8
108	Common conformational changes in flavodoxins induced by FMN and anion binding: The structure of <i>Helicobacter pylori</i> apoflavodoxin. Proteins: Structure, Function and Bioinformatics, 2007, 69, 581-594.	2.6	24

#	Article	IF	CITATIONS
109	Chemical Modification of Protein Surfaces To Improve Their Reversible Enzyme Immobilization on Ionic Exchangers. Biomacromolecules, 2006, 7, 3052-3058.	5.4	46
110	X-ray and Neutron Diffraction Approaches to the Structural Analysis of Protein-Lipid Interactions. , 2006, , 63-110.		1
111	Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis. Protein Science, 2005, 14, 3013-3024.	7.6	10
112	Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nature Structural and Molecular Biology, 2005, 12, 533-538.	8.2	89
113	Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS Journal, 2005, 272, 4362-4371.	4.7	59
114	Activation in the family of Candida rugosa isolipases by polyethylene glycol. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 225-229.	1.8	13
115	Crystallization and preliminary X-ray diffraction studies of the pneumococcal teichoic acid phosphorylcholine esterase Pce. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 221-224.	0.7	11
116	Structural analysis of interactions for complex formation between Ferredoxin-NADP+ reductase and its protein partners. Proteins: Structure, Function and Bioinformatics, 2005, 59, 592-602.	2.6	24
117	Structural Basis for Membrane Anchorage of Viral ϕ29 DNA during Replication*. Journal of Biological Chemistry, 2005, 280, 42486-42488.	3.4	9
118	Structure of the Functional Domain of φ29 Replication Organizer. Journal of Biological Chemistry, 2005, 280, 20730-20739.	3.4	8
119	Structural Analysis of the Laetiporus sulphureus Hemolytic Pore-forming Lectin in Complex with Sugars. Journal of Biological Chemistry, 2005, 280, 17251-17259.	3.4	109
120	The Ferredoxin-NADP(H) Reductase from Rhodobacter capsulatus:  Molecular Structure and Catalytic Mechanism,. Biochemistry, 2005, 44, 11730-11740.	2.5	36
121	The 1.49Ã Resolution Crystal Structure of PsbQ from Photosystem II of Spinacia oleracea Reveals a PPII Structure in the N-terminal Region. Journal of Molecular Biology, 2005, 350, 1051-1060.	4.2	60
122	C-Terminal Tyrosine of Ferredoxinâ^'NADP+ Reductase in Hydride Transfer Processes with NAD(P)+/H. Biochemistry, 2005, 44, 13477-13490.	2.5	51
123	Stabilization of Penicillin G Acylase from Escherichia coli : Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
124	Crystallization and preliminary crystallographic analysis of a novel haemolytic lectin from the mushroomLaetiporus sulphureus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1139-1141.	2.5	15
125	Crystallization of a proteolyzed form of the horse pancreatic lipase-related protein 2: structural basis for the specific detergent requirement. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2107-2109.	2.5	6
126	Crystallization and preliminary X-ray diffraction analysis of ferredoxin-NADP(H) reductase fromRhodobacter capsulatus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2332-2335.	2.5	2

#	Article	IF	CITATIONS
127	The Crystal Structure of Feruloyl Esterase A from Aspergillus niger Suggests Evolutive Functional Convergence in Feruloyl Esterase Family. Journal of Molecular Biology, 2004, 338, 495-506.	4.2	110
128	Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure, 2003, 11, 1239-1249.	3.3	149
129	Crystal and Electron Microscopy Structures of Sticholysin II Actinoporin Reveal Insights into the Mechanism of Membrane Pore Formation. Structure, 2003, 11, 1319-1328.	3.3	218
130	Crystallization and preliminary X-ray diffraction studies of two different crystal forms of the lipase 2 isoform from the yeastCandida rugosa. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 499-501.	2.5	5
131	Structural Insights into the Lipase/esterase Behavior in the Candida rugosa Lipases Family: Crystal Structure of the Lipase 2 Isoenzyme at 1.97Ã Resolution. Journal of Molecular Biology, 2003, 332, 1059-1069.	4.2	95
132	Crystal Structures of Methionine Adenosyltransferase Complexed with Substrates and Products Reveal the Methionine-ATP Recognition and Give Insights into the Catalytic Mechanism. Journal of Molecular Biology, 2003, 331, 407-416.	4.2	47
133	Involvement of the Pyrophosphate and the 2′-Phosphate Binding Regions of Ferredoxin-NADP+ Reductase in Coenzyme Specificity. Journal of Biological Chemistry, 2003, 278, 49203-49214.	3.4	34
134	Activation of Horse PLRP2 by Bile Salts Does Not Require Colipaseâ€. Biochemistry, 2002, 41, 8422-8428.	2.5	13
135	Mechanism of Coenzyme Recognition and Binding Revealed by Crystal Structure Analysis of Ferredoxin–NADP+ Reductase Complexed with NADP+. Journal of Molecular Biology, 2002, 319, 1133-1142.	4.2	73
136	Structural basis for the kinetics of Candida rugosa Lip1 and Lip3 isoenzymes. Colloids and Surfaces B: Biointerfaces, 2002, 26, 67-74.	5.0	8
137	Crystallization and preliminary X-ray diffraction studies of the water-soluble state of the pore-forming toxin sticholysin II from the sea anemoneStichodactyla helianthus. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1229-1231.	2.5	3
138	Crystallization and preliminary X-ray diffraction studies of the complete modular endolysin from Cp-1, a phage infectingStreptococcus pneumoniae. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1487-1489.	2.5	2
139	Probing the role of glutamic acid 139 ofAnabaenaferredoxin-NADP+reductase in the interaction with substrates. FEBS Journal, 2002, 269, 4938-4947.	0.2	10
140	Influence of the conformational flexibility on the kinetics and dimerisation process of twoCandida rugosalipase isoenzymes. FEBS Letters, 2001, 501, 87-91.	2.8	42
141	Regioselective resolution of 1,n-diols catalysed by lipases: a rational explanation of the enzymayic selectivity. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 1013-1024.	1.8	14
142	Role of a Cluster of Hydrophobic Residues Near the FAD Cofactor in Anabaena PCC 7119 Ferredoxin-NADP+Reductase for Optimal Complex Formation and Electron Transfer to Ferredoxin. Journal of Biological Chemistry, 2001, 276, 27498-27510.	3.4	37
143	Probing the Determinants of Coenzyme Specificity in Ferredoxin-NADP+ Reductase by Site-directed Mutagenesis. Journal of Biological Chemistry, 2001, 276, 11902-11912.	3.4	54
144	Structural basis of the catalytic role of Glu301 inAnabaena PCC 7119 ferredoxin-NADP+ reductase revealed by x-ray crystallography. , 2000, 38, 60-69.		18

#	Article	IF	CITATIONS
145	Directed Evolution of β-Glucosidase A from Paenibacillus polymyxa to Thermal Resistance. Journal of Biological Chemistry, 2000, 275, 13708-13712.	3.4	76
146	Critical Role of Micelles in Pancreatic Lipase Activation Revealed by Small Angle Neutron Scattering. Journal of Biological Chemistry, 2000, 275, 4220-4224.	3.4	46
147	The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 300, 363-375.	4.2	72
148	Structural basis of the catalytic role of Glu301 in Anabaena PCC 7119 ferredoxin-NADP+ reductase revealed by x-ray crystallography. Proteins: Structure, Function and Bioinformatics, 2000, 38, 60.	2.6	2
149	Acyclic phenylalkanediols as substrates for the study of enzyme recognition. Regioselective acylation by porcine pancreatic lipase: a structural hypothesis for the enzymatic selectivity. Tetrahedron, 1999, 55, 14961-14974.	1.9	9
150	The lipase/colipase complex is activated by a micelle: neutron crystallographic evidence. Chemistry and Physics of Lipids, 1998, 93, 123-129.	3.2	21
151	Structural basis of increased resistance to thermal denaturation induced by single amino acid substitution in the sequence of \hat{l}^2 -glucosidase A fromBacillus polymyxa. , 1998, 33, 567-576.		26
152	Role of Arg100 and Arg264 fromAnabaenaPCC 7119 Ferredoxinâ^'NADP+Reductase for Optimal NADP+Binding and Electron Transferâ€. Biochemistry, 1998, 37, 17680-17691.	2.5	48
153	Pancreatic Lipase-Related Protein Type 1: A Double Mutation Restores a Significant Lipase Activity. Biochemical and Biophysical Research Communications, 1998, 246, 513-517.	2.1	26
154	Crystal structure of β-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. Journal of Molecular Biology, 1998, 275, 491-502.	4.2	166
155	Pancreatic lipase-related protein type I: a specialized lipase or an inactive enzyme. Protein Engineering, Design and Selection, 1998, 11, 135-142.	2.1	24
156	Ion Pairing between Lipase and Colipase Plays a Critical Role in Catalysis. Journal of Biological Chemistry, 1998, 273, 33604-33609.	3.4	16
157	The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Letters, 1997, 405, 114-118.	2.8	79
158	Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO Journal, 1997, 16, 5531-5536.	7.8	96
159	Synthesis and structural study of [{Pd(C6H4CH2N(CH3)2)}2(μ-Br) (μ-X)] complexes (X = hydroxide, amide) Tj	EŢQq1	1 0. <u>7</u> 84314 g
160	Lipase Activation by Nonionic Detergents. Journal of Biological Chemistry, 1996, 271, 18007-18016.	3.4	196
161	A new approach to structure resolution by molecular dynamics: variable force constants strategy. Acta Crystallographica Section B: Structural Science, 1995, 51, 76-80.	1.8	2
162	Distortions of molecular geometry in pentafluorophenyl rings bonded to metals. Journal of Chemical Crystallography, 1994, 24, 457-464.	1.1	4

#	Article	IF	CITATIONS
163	Di- and tri-nuclear nickel(II) complexes with bridging thiolato groups. Crystal structure of [NBu4]2[Ni3(C6F5)4(µ-SEt)4]. Journal of the Chemical Society Dalton Transactions, 1994, , 19-23.	1.1	22
164	New methoxo-, hydroxo- and pyrazolate-bridged platinum(II) complexes. Crystal structure of [NBu4]2[{Pt(C6F5)2}2(µ-OH)(µ-dmpz)](dmpz = 3,5-dimethylpyrazolate). Journal of the Chemical Society Dalton Transactions, 1992, , 1681-1686.	1.1	31
165	Synthesis and reactivity of hydroxo-bridged binuclear platinum complexes. Crystal structure of [NBu4]2[{Pt(C6F5)2(Aµ-OH)}2]. Journal of the Chemical Society Dalton Transactions, 1992, , 53-58.	1.1	55
166	Hydroxo and azolate derivatives of pentafluorophenyl-nickel(II) complexes. Crystal structure of [NBu4]2[{Ni(C6F5)2(.muOH)}2] and [NBu4]2[{Ni(C6F5)2}2(.muOH)(.mupyrazolato)]. Inorganic Chemistry, 1992, 31, 1518-1523.	4.0	57
167	Reactivity of the [Ni(C6F5)2(μ-OH)2]2â^' ion towards β-diketones, 8-hydroxiquinoline and heterocyclic thiones. Crystal structure of [NBu4][Ni(C6F5)2(C5H4NS-2)]. Journal of Organometallic Chemistry, 1992, 435, 193-202.	1.8	33
168	Reactions of cationic ruthenium hydrides with 1-alkynes: formation of .sigmaalkynyl ruthenium complexes and reduction of 1-alkynes to 1-alkenes. Organometallics, 1991, 10, 2371-2376.	2.3	31
169	Nickel-catalyzed Cyclotrimerization of Malononitrile: The Dicyanomethanide-bridged, Anionic Nill Complex[{Ni(C5F5)2(μ-NCCHCN)}2]2⊖. Angewandte Chemie International Edition in English, 1991, 30, 716-718.	4.4	35
170	Crystal growth and crystal structure of KTb(CrO4)2. Journal of Solid State Chemistry, 1990, 85, 83-87.	2.9	7
171	Synthesis and structural study of neutral mononuclear and anionic binuclear 2,4,6-trifluorophenyl derivatives of palladium(II). Crystal structure of [P(CH2Ph)Ph3]2[(C6F3H2)2Pd(µ-SCN)(µ-NCS)Pd(C6F3H2)2]. Journal of the Chemical Society Dalton Transactions. 1990. , 1621-1626.	1.1	19