
Berta GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3286257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory. Brain, Behavior, and Immunity, 2022, 101, 231-245.	4.1	10
2	TRPV2: A Key Player in Myelination Disorders of the Central Nervous System. International Journal of Molecular Sciences, 2022, 23, 3617.	4.1	7
3	Astrocyte-targeted Overproduction of IL-10 Reduces Neurodegeneration after TBI. Experimental Neurobiology, 2022, 31, 173-195.	1.6	10
4	Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. Journal of Neuroinflammation, 2021, 18, 31.	7.2	21
5	Evaluation of Myelin Phagocytosis by Microglia/Macrophages in Nervous Tissue Using Flow Cytometry. Current Protocols, 2021, 1, e73.	2.9	3
6	Specific microglial phagocytic phenotype and decrease of lipid oxidation in white matter areas during aging: Implications of different microenvironments. Neurobiology of Aging, 2021, 105, 280-295.	3.1	7
7	Differential Roles of TREM2+ Microglia in Anterograde and Retrograde Axonal Injury Models. Frontiers in Cellular Neuroscience, 2020, 14, 567404.	3.7	12
8	Astrocyteâ€ŧargeted ILâ€10 production decreases proliferation and induces a downregulation of activated microglia/macrophages after PPT. Glia, 2019, 67, 741-758.	4.9	24
9	Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience, 2019, 405, 118-136.	2.3	76
10	Reduced cuprizone-induced cerebellar demyelination in mice with astrocyte-targeted production of IL-6 is associated with chronically activated, but less responsive microglia. Journal of Neuroimmunology, 2017, 310, 97-102.	2.3	18
11	Purine Signaling and Microglial Wrapping. Advances in Experimental Medicine and Biology, 2016, 949, 147-165.	1.6	19
12	Astrocyte-targeted production of interleukin-6 reduces astroglial and microglial activation in the cuprizone demyelination model: Implications for myelin clearance and oligodendrocyte maturation. Glia, 2016, 64, 2104-2119.	4.9	56
13	Are Microglial Cells the Regulators of Lymphocyte Responses in the CNS?. Frontiers in Cellular Neuroscience, 2015, 9, 440.	3.7	23
14	Astrocyteâ€ŧargeted production of ILâ€10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy. Glia, 2015, 63, 1166-1184.	4.9	56
15	Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain, Behavior, and Immunity, 2015, 45, 80-97.	4.1	48
16	Effects of astrocyteâ€ŧargeted production of interleukinâ€6 in the mouse on the host response to nerve injury. Glia, 2014, 62, 1142-1161.	4.9	34
17	Tomato Lectin Histochemistry for Microglial Visualization. Methods in Molecular Biology, 2013, 1041, 261-279.	0.9	29
18	Microglia Detection by Enzymatic Histochemistry. Methods in Molecular Biology, 2013, 1041, 243-259.	0.9	6

Berta GonzÃilez

#	Article	IF	CITATIONS
19	Overexpression of the nuclear factor kappaB inhibitor A20 is neurotoxic after an excitotoxic injury to the immature rat brain. Neurological Research, 2013, 35, 308-319.	1.3	6
20	285. Cytokine, 2013, 63, 311.	3.2	0
21	Differential Modulation of TREM2 Protein during Postnatal Brain Development in Mice. PLoS ONE, 2013, 8, e72083.	2.5	40
22	Interleukinâ€10 overexpression does not synergize with the neuroprotective action of RGDâ€containing vectors after postnatal brain excitotoxicity but modulates the main inflammatory cell responses. Journal of Neuroscience Research, 2012, 90, 143-159.	2.9	4
23	Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Frontiers in Bioscience - Landmark, 2011, 16, 1157.	3.0	126
24	Increase in Th17 and T-reg Lymphocytes and Decrease of IL22 Correlate with the Recovery Phase of Acute EAE IN Rat. PLoS ONE, 2011, 6, e27473.	2.5	57
25	Decreased myeloperoxidase expressing cells in the aged rat brain after excitotoxic damage. Experimental Gerontology, 2011, 46, 723-730.	2.8	16
26	Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. Journal of Neuroimmunology, 2010, 223, 39-54.	2.3	48
27	Interleukin-10 and Interleukin refeceptor-I Are Upregulated in Glial Cells After an Excitotoxic Injury to the Postnatal Rat Brain. Journal of Neuropathology and Experimental Neurology, 2009, 68, 391-403.	1.7	41
28	CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model. Journal of Neuroimmunology, 2009, 209, 65-80.	2.3	45
29	Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Research, 2009, 1291, 140-152.	2.2	48
30	Neuroprotective effects of the anti-inflammatory compound triflusal on ischemia-like neurodegeneration in mouse hippocampal slice cultures occur independent of microglia. Experimental Neurology, 2009, 218, 11-23.	4.1	12
31	Substantial migration of SVZ cells to the cortex results in the generation of new neurons in the excitotoxically damaged immature rat brain. Molecular and Cellular Neurosciences, 2008, 38, 170-182.	2.2	32
32	RGD domains neuroprotect the immature brain by a glialâ€dependent mechanism. Annals of Neurology, 2007, 62, 251-261.	5.3	18
33	Caspaseâ€3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation. Glia, 2007, 55, 954-965.	4.9	79
34	Distinct spatial and temporal activation of caspase pathways in neurons and glial cells after excitotoxic damage to the immature rat brain. Journal of Neuroscience Research, 2007, 85, 3545-3556.	2.9	18
35	Antioxidant Cu/Zn SOD: Expression in postnatal brain progenitor cells. Neuroscience Letters, 2006, 401, 71-76.	2.1	13
36	Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector. BMC Neuroscience, 2006, 7, 35.	1.9	32

Berta GonzÃilez

#	Article	IF	CITATIONS
37	Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain. BMC Neuroscience, 2005, 6, 26.	1.9	39
38	Astroglial Nitration after Postnatal Excitotoxic Damage: Correlation with Nitric Oxide Sources, Cytoskeletal, Apoptotic and Antioxidant Proteins. Journal of Neurotrauma, 2005, 22, 189-200.	3.4	27
39	Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury. Journal of Neuroinflammation, 2005, 2, 12.	7.2	37
40	Dynamics of microglia in the developing rat brain. Journal of Comparative Neurology, 2003, 458, 144-157.	1.6	148
41	Time Course of Proliferation and Elimination of Microglia/Macrophages in Different Neurodegenerative Conditions. Journal of Neurotrauma, 2002, 19, 1503-1520.	3.4	38
42	Decrease of Proinflammatory Molecules Correlates With Neuroprotective Effect of the Fluorinated Salicylate Triflusal After Postnatal Excitotoxic Damage. Stroke, 2002, 33, 2499-2505.	2.0	40
43	NF-κB and lκBα expression following traumatic brain injury to the immature rat brain. Journal of Neuroscience Research, 2002, 67, 772-780.	2.9	56
44	Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain. Journal of Neuroscience Research, 2002, 68, 745-754.	2.9	49
45	Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia, 2002, 38, 1-14.	4.9	36
46	Expression of 27 kDa heat shock protein (Hsp27) in immature rat brain after a cortical aspiration lesion. Glia, 2001, 36, 259-270.	4.9	14
47	Glial activation in the immature rat brain: implication of inflammatory transcription factors and cytokine expression. Progress in Brain Research, 2001, 132, 375-389.	1.4	18
48	Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. European Journal of Neuroscience, 2000, 12, 3505-3520.	2.6	132
49	Oral administration of the anti-inflammatory substance triflusal results in the downregulation of constitutive transcription factor NF-κB in the postnatal rat brain. Neuroscience Letters, 2000, 288, 41-44.	2.1	22
50	Expression of Growth Inhibitory Factor (Metallothionein-III) mRNA and Protein Following Excitotoxic Immature Brain Injury. Journal of Neuropathology and Experimental Neurology, 1999, 58, 389-397.	1.7	39
51	Liver and brain metallothionein regulation in transgenic mice overexpressing interleukin-6 and in mice carrying a null mutation in the interleukin-6 gene. , 1999, , 363-370.		4
52	Expression of purine metabolism-related enzymes by microglial cells in the developing rat brain. , 1998, 398, 333-346.		35
53	Development of microglia in the postnatal rat hippocampus. Hippocampus, 1998, 8, 458-474.	1.9	110
54	Understanding glial abnormalities associated with myelin deficiency in the jimpy mutant mouse. Brain Research Reviews, 1998, 26, 29-42.	9.0	28

Berta GonzÃilez

#	Article	IF	CITATIONS
55	Localization of Metallothionein-I and -III Expression in the CNS of Transgenic Mice with Astrocyte-Targeted Expression of Interleukin 6. Experimental Neurology, 1998, 153, 184-194.	4.1	49
56	Stat3 and NFκB glial expression after excitotoxic damage to the postnatal brain. NeuroReport, 1998, 9, 2869-2873.	1.2	20
57	Glial Response to Excitotoxic Injury in the Immature Rat Brain. , 1998, , 271-295.		3
58	Glial Abnormalities in Genetically Determined Disorders of Myelin. , 1998, , 363-384.		1
59	Quantitative Analysis of Microglial Reaction to a Cortical Excitotoxic Lesion in the Early Postnatal Brain. Experimental Neurology, 1997, 147, 410-417.	4.1	36
60	Abnormal expression of the proliferating cell nuclear antigen (PCNA) in the spinal cord of the hypomyelinated Jimpy mutant mice. Brain Research, 1997, 747, 130-139.	2.2	16
61	Induction of metallothionein in astrocytes and microglia in the spinal cord from the myelin-deficient jimpy mouse. Brain Research, 1997, 767, 345-355.	2.2	32
62	Expression of LFA-1α and ICAM-1 in the developing rat brain: a potential mechanism for the recruitment of microglial cell precursors. Developmental Brain Research, 1997, 103, 163-170.	1.7	31
63	Development of microglia in the prenatal rat hippocampus. Journal of Comparative Neurology, 1997, 377, 70-84.	1.6	85
64	Reduction of the microglial cell number in rat primary glial cell cultures by exogenous addition of dibutyryl cyclic adenosine monophosphate. Journal of Neuroimmunology, 1996, 70, 123-129.	2.3	7
65	The microglial reaction in spinal cords of jimpy mice is related to apoptotic oligodendrocytes. Brain Research, 1996, 712, 134-142.	2.2	42
66	Morphology and distribution of microglial cells in the young and adult mouse cerebellum. Journal of Comparative Neurology, 1995, 361, 602-616.	1.6	74
67	Microglial cell reaction in the gray and white matter in spinal cords from jimpy mice. An enzyme histochemical study at the light and electron microscope level. Brain Research, 1995, 694, 287-298.	2.2	19
68	Effect of zinc, copper and glucocorticoids on metallothionein levels of cultured neurons and astrocytes from rat brain. Chemico-Biological Interactions, 1994, 93, 197-219.	4.0	61
69	Immunological reactions to neural grafts in the central nervous system. Restorative Neurology and Neuroscience, 1991, 2, 271-282.	0.7	12
70	Identification and distribution of microglial cells in the cerebral cortex of the lizard: A histochemical study. Journal of Comparative Neurology, 1991, 311, 434-444.	1.6	30
71	Cytochemical demonstration of TPPase in myelinated fibers in the central and peripheral nervous system of the rat. Brain Research, 1989, 492, 203-210.	2.2	9
72	Expression of Growth Inhibitory Factor (Metallothionein-III) mRNA and Protein Following Excitotoxic Immature Brain Injury. Journal of Neuropathology and Experimental Neurology, 0, , .	1.7	0