Petya V Krasteva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3285524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Vibrio cholerae</i> VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP. Science, 2010, 327, 866-868.	12.6	397
2	Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature, 2014, 516, 250-253.	27.8	246
3	Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR. PLoS Biology, 2008, 6, e67.	5.6	189
4	Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E209-18.	7.1	160
5	Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis. PLoS Biology, 2011, 9, e1000588.	5.6	159
6	Sensing the messenger: The diverse ways that bacteria signal through câ€diâ€GMP. Protein Science, 2012, 21, 929-948.	7.6	109
7	Versatile modes of cellular regulation via cyclic dinucleotides. Nature Chemical Biology, 2017, 13, 350-359.	8.0	99
8	Insights into the structure and assembly of a bacterial cellulose secretion system. Nature Communications, 2017, 8, 2065.	12.8	90
9	Bacterial transformation: ComFA is a DNAâ€dependent ATPase that forms complexes with ComFC and DprA. Molecular Microbiology, 2017, 105, 741-754.	2.5	42
10	Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiology Reviews, 2022, 46, .	8.6	28
11	Conserved Streptococcus pneumoniae Spirosomes Suggest a Single Type of Transformation Pilus in Competence. PLoS Pathogens, 2015, 11, e1004835.	4.7	26
12	Architecture and regulation of an enterobacterial cellulose secretion system. Science Advances, 2021, 7, .	10.3	19
13	Biophysical Assays for Protein Interactions in the Wsp Sensory System and Biofilm Formation. Methods in Enzymology, 2010, 471, 161-184.	1.0	16
14	Structure and Multitasking of the c-di-GMP-Sensing Cellulose Secretion Regulator BcsE. MBio, 2020, 11, .	4.1	16
15	Analysis of HubP-dependent cell pole protein targeting inÂVibrio cholerae uncovers novel motility regulators. PLoS Genetics, 2022, 18, e1009991.	3.5	11
16	lsothermal Titration Calorimetry to Determine Apparent Dissociation Constants (K d) and Stoichiometry of Interaction (n) of C-di-GMP Binding Proteins. Methods in Molecular Biology, 2017, 1657, 403-416.	0.9	5
17	Bacterial electrophysiology brought to light. Nature Methods, 2011, 8, 714-714.	19.0	2
18	CRISPR snapshots of a gene-editing tool. Nature Methods, 2014, 11, 365-365.	19.0	2

Petya V Krasteva

#	Article	IF	CITATIONS
19	Wholesome proteomics. Nature Methods, 2011, 8, 1002-1002.	19.0	1
20	Molecular matchmaking for neural control. Nature Methods, 2011, 8, 898-898.	19.0	1
21	Taming crystals' whimsy. Nature Methods, 2011, 8, 622-622.	19.0	1
22	DNA nanoLEGOlogy. Nature Methods, 2012, 9, 640-641.	19.0	1
23	Clarifying brain structure, literally. Nature Methods, 2011, 8, 793-793.	19.0	0
24	RNA structures. Nature Methods, 2012, 9, 38-38.	19.0	0
25	Zooming in on nuclear logistics. Nature Methods, 2014, 11, 126-126.	19.0	0