Feng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/328487/publications.pdf

Version: 2024-02-01

82 papers 4,505 citations

34 h-index 65 g-index

87 all docs

87 docs citations

87 times ranked 4807 citing authors

#	Article	IF	CITATIONS
1	Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water Research, 2017, 124, 482-495.	11.3	417
2	Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research, 2017, 124, 673-692.	11.3	312
3	Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water Research, 2015, 72, 64-74.	11.3	244
4	Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Research, 2013, 47, 49-56.	11.3	180
5	Effects of Monovalent Cations on the Competitive Adsorption of Perfluoroalkyl Acids by Kaolinite: Experimental Studies and Modeling. Environmental Science & Experimental Studies and Modeling. Environmental Science & Experimental Studies and Modeling. Environmental Science & Experimental Studies and Modeling.	10.0	172
6	How Do Enzymes Orient When Trapped on Metal–Organic Framework (MOF) Surfaces?. Journal of the American Chemical Society, 2018, 140, 16032-16036.	13.7	138
7	Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination byÂexploratory data analysis. Water Research, 2012, 46, 3101-3109.	11.3	137
8	Interactions of triazine herbicides with biochar: Steric and electronic effects. Water Research, 2015, 80, 179-188.	11.3	127
9	Thermal Stability and Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon. Environmental Science and Technology Letters, 2020, 7, 343-350.	8.7	127
10	Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. Journal of Hazardous Materials, 2016, 308, 11-20.	12.4	123
11	Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACI and alum: A critical review. Advances in Colloid and Interface Science, 2015, 226, 78-85.	14.7	119
12	Ï€ ⁺ â€'Ï€ Interactions between (Hetero)aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environmental Science & Environmental	10.0	105
13	Sorption and Desorption Mechanisms of Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in Natural Soils: Thermodynamics and Hysteresis. Environmental Science & Emp; Technology, 2019, 53, 11818-11827.	10.0	105
14	Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. Journal of Environmental Sciences, 2017, 54, 1-12.	6.1	104
15	New Halogenated Disinfection Byproducts in Swimming Pool Water and Their Permeability across Skin. Environmental Science & Echnology, 2012, 46, 7112-7119.	10.0	96
16	Perfluoroalkyl acids in urban stormwater runoff: Influence of land use. Water Research, 2012, 46, 6601-6608.	11.3	88
17	Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds. Environmental Science & Environmental Scien	10.0	88
18	Comparative study of the effects of experimental variables on growth rates of aluminum and iron hydroxide flocs during coagulation and their structural characteristics. Desalination, 2010, 250, 902-907.	8.2	82

#	Article	IF	CITATIONS
19	Investigation of organic foulants behavior on hollow-fiber UF membranes in a drinking water treatment plant. Separation and Purification Technology, 2012, 95, 109-117.	7.9	81
20	Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability. Separation and Purification Technology, 2014, 132, 430-437.	7.9	79
21	Risks of Single-Walled Carbon Nanotubes Acting as Contaminants-Carriers: Potential Release of Phenanthrene in Japanese Medaka (<i>Oryzias latipes</i>). Environmental Science & Eamp; Technology, 2013, 47, 4704-4710.	10.0	78
22	Effects of low temperature on coagulation kinetics and floc surface morphology using alum. Desalination, 2009, 237, 201-213.	8.2	75
23	Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC–TOF–MSE high-resolution parent ion search. Analytica Chimica Acta, 2017, 988, 41-49.	5.4	75
24	PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. Environmental Science and Technology Letters, 2018, 5, 382-388.	8.7	71
25	Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environmental Science and Technology Letters, 2022, 9, 473-481.	8.7	61
26	Efficient Fenton-like Process Induced by Fortified Electron-Rich O Microcenter on the Reduction State Cu-Doped CNO Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16496-16505.	8.0	59
27	Effects of low temperature on coagulation of kaolinite suspensions. Water Research, 2008, 42, 2983-2992.	11.3	58
28	Batch and column study: Sorption of perfluorinated surfactants from water and cosolvent systems by Amberlite XAD resins. Journal of Colloid and Interface Science, 2012, 368, 505-511.	9.4	57
29	Effects of low temperature on aluminum(III) hydrolysis: Theoretical and experimental studies. Journal of Environmental Sciences, 2008, 20, 907-914.	6.1	53
30	Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar). Science of the Total Environment, 2018, 618, 276-283.	8.0	51
31	Effect of granular activated carbon and other porous materials on thermal decomposition of per- and polyfluoroalkyl substances: Mechanisms and implications for water purification. Water Research, 2021, 200, 117271.	11.3	48
32	Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions. Journal of Environmental Sciences, 2013, 25, 2207-2213.	6.1	43
33	Thermal Decomposition of Anionic, Zwitterionic, and Cationic Polyfluoroalkyl Substances in Aqueous Film-Forming Foams. Environmental Science & Environ	10.0	40
34	Effects of humic acid on physical and hydrodynamic properties of kaolin flocs by particle image velocimetry. Water Research, 2011, 45, 3981-3990.	11.3	38
35	An Investigation of Thermal Air Degradation and Pyrolysis of Per- and Polyfluoroalkyl Substances and Aqueous Film-Forming Foams in Soil. ACS ES&T Engineering, 2022, 2, 198-209.	7.6	35
36	Effects of enhanced coagulation on polar halogenated disinfection byproducts in drinking water. Separation and Purification Technology, 2010, 76, 26-32.	7.9	33

#	Article	IF	Citations
37	Effect of in situ Fe(<scp>ii</scp>)/Fe(<scp>iii</scp>)-doping on the visible light-Fenton-like catalytic activity of Bi/BiOBr hierarchical microspheres. Catalysis Science and Technology, 2017, 7, 658-667.	4.1	32
38	Effect of Adsorption Nonlinearity on the pH–Adsorption Profile of Ionizable Organic Compounds. Langmuir, 2014, 30, 1994-2001.	3.5	30
39	Synergistic effect of humic and fulvic acids on Ni removal by the calcined Mg/Al layered double hydroxide. RSC Advances, 2015, 5, 18866-18874.	3.6	29
40	Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications. Journal of Hazardous Materials, 2022, 439, 129580.	12.4	29
41	Comparison of biosorbents with inorganic sorbents for removing copper(II) from aqueous solutions. Journal of Environmental Management, 2009, 90, 3105-3109.	7.8	28
42	Speciation characterization and coagulation of poly-silica-ferric-chloride: The role of hydrolyzed Fe(III) and silica interaction. Journal of Environmental Sciences, 2011, 23, 749-756.	6.1	27
43	Production of granular activated carbon by thermal air oxidation of biomass charcoal/biochar for water treatment in rural communities: A mechanistic investigation. Chemical Engineering Journal Advances, 2020, 4, 100035.	5.2	27
44	Private road competition and equilibrium with traffic equilibrium constraints. Journal of Advanced Transportation, 2009, 43, 21-45.	1.7	26
45	In Vivo Generation of PFOA, PFOS, and Other Compounds from Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in a Terrestrial Invertebrate (<i>Lumbricus terrestris</i>). Environmental Science & Echnology, 2020, 54, 7378-7387.	10.0	26
46	Is electrophoretic mobility determination meaningful for aluminum(III) coagulation of kaolinite suspension?. Journal of Colloid and Interface Science, 2008, 327, 348-353.	9.4	24
47	One-step synthesis of aluminum magnesium oxide nanocomposites for simultaneous removal of arsenic and lead ions in water. RSC Advances, 2015, 5, 8190-8193.	3.6	24
48	Optimized coagulation pathway of Al13: Effect of in-situ Aggregation of Al13. Chemosphere, 2019, 230, 76-83.	8.2	24
49	Adsorption and desorption of nitrous oxide by raw and thermally air-oxidized chars. Science of the Total Environment, 2018, 643, 1436-1445.	8.0	23
50	Enhanced removal for humic-acid (HA) and coagulation process using carbon nanotubes (CNTs)/polyalumium chloride (PACl) composites coagulants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 189-199.	4.7	21
51	Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry. Journal of Environmental Sciences, 2012, 24, 1157-1164.	6.1	19
52	Predicting aqueous solubility of environmentally relevant compounds from molecular features: A simple but highly effective four-dimensional model based on Project to Latent Structures. Water Research, 2013, 47, 5362-5370.	11.3	17
53	The first quantitative investigation of compounds generated from PFAS, PFAS-containing aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes. Journal of Hazardous Materials, 2022, 436, 129313.	12.4	17
54	Perfluorooctane sulfonate (PFOS) contamination of fish in urban lakes: A prioritization methodology for lake management. Water Research, 2013, 47, 7264-7272.	11.3	16

#	Article	IF	CITATIONS
55	Effects of Al2O3 and TiO2 on the coagulation process by Al2(SO4)3 (AS) and poly-aluminum chloride (PACI) in kaolin suspension. Separation and Purification Technology, 2014, 124, 9-17.	7.9	16
56	Removal of active dyes by ultrafiltration membrane pre-deposited with a PSFM coagulant: Performance and mechanism. Chemosphere, 2019, 223, 204-210.	8.2	16
57	EFFICIENCY LOSS OF PRIVATE ROAD WITH CONTINUOUSLY DISTRIBUTED VALUE-OF-TIME. Transportmetrica, 2008, 4, 19-32.	1.8	15
58	Indecisiveness of electrophoretic mobility determination in evaluating Fe(III) coagulation performance. Separation and Purification Technology, 2009, 68, 273-278.	7.9	15
59	Insight into the combined colloidal-humic acid fouling on the hybrid coagulation microfiltration membrane process: The importance of aluminum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 98-104.	4.7	15
60	Thermal Decomposition of PFAS: Response to Comment on "Thermal Stability and Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon― Environmental Science and Technology Letters, 2021, 8, 364-365.	8.7	15
61	Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry. Journal of Colloid and Interface Science, 2013, 397, 163-168.	9.4	14
62	Effects of different coagulants in treatment of TiO2â€"humic acid (HA) water and the aggregate characterization in different coagulation conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 213-223.	4.7	14
63	Relative importance of hydrolyzed Al species (Ala, Alb, Alc) on residual Al and effects of nano-particles (Fe-surface modified TiO2 and Al2O3) on coagulation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 139-150.	4.7	14
64	Characterization and treatment of Bakken oilfield produced water as a potential source of value-added elements. Science of the Total Environment, 2021, 770, 145283.	8.0	14
65	A sulfonated mesoporous silica nanoparticle for enzyme protection against denaturants and controlled release under reducing conditions. Journal of Colloid and Interface Science, 2019, 556, 292-300.	9.4	12
66	Effects of humic acid on recoverability and fractal structure of alum-kaolin flocs. Journal of Environmental Sciences, 2011, 23, 731-737.	6.1	11
67	Efficient purification of Al30 by organic complexation method. Journal of Environmental Sciences, 2019, 80, 240-247.	6.1	11
68	Modeling particle-size distribution dynamics in a shear-induced breakage process with an improved breakage kernel: Importance of the internal bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 87-94.	4.7	10
69	Effects of post-pyrolysis air oxidation on the chemical composition of biomass chars investigated by solid-state nuclear magnetic resonance spectroscopy. Carbon, 2019, 153, 173-178.	10.3	10
70	An Overview of the Formation of PFOA and PFOS in Drinking-Water and Wastewater Treatment Processes. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	9
71	Partitioning Characteristics of Perfluorooctane Sulfonate Between Water and Foods. Archives of Environmental Contamination and Toxicology, 2012, 62, 42-48.	4.1	8
72	Optical property of iron binding to Suwannee River fulvic acid. Chemosphere, 2013, 91, 1042-1048.	8.2	8

#	Article	IF	CITATIONS
73	Occurance and control of manganese in a large scale water treatment plant. Frontiers of Environmental Science and Engineering, 2015, 9, 66-72.	6.0	8
74	Survey of treatment process in water treatment plant and the characteristics of flocs formed by two new coagulants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 211-221.	4.7	7
75	Comment on "Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients― by Zareitalabad et al. [Chemosphere 91(6) (2013) 725–732]. Chemosphere, 2015, 138, 1056-1057.	8.2	6
76	Effects of low temperature on floc fractal dimensions and shape factors during alum coagulation. Journal of Water Supply: Research and Technology - AQUA, 2009, 58, 21-27.	1.4	5
77	A review of biochar functionalized by thermal air oxidation. , 2022, 1, 187-195.		4
78	Comment on "Inhibiting the regeneration of N-nitrosodimethylamine in drinking water by UV photolysis combined with ozonation―by B. Xu, Z. Chen, F. Qi, J. Ma, F. Wu [J. Hazard. Mater. 168 (2009) 108–114]. Journal of Hazardous Materials, 2009, 172, 518-519.	12.4	2
79	Practical evaluation for water utilities in China by using analytic hierarchy process. Frontiers of Environmental Science and Engineering, 2015, 9, 131-137.	6.0	2
80	Crystallization of aluminum polycation sulfates: transformation of tetrahedral crystals into block crystals in aqueous solutions. CrystEngComm, 2019, 21, 202-206.	2.6	2
81	A novel approach using a fouling index to evaluate NOM fouling behavior in a low pressure ultrafiltration process. Water Science and Technology: Water Supply, 2014, 14, 196-204.	2.1	1
82	Prediction of biopersistence of hydrocarbons using a single parameter. Chemosphere, 2018, 213, 76-83.	8.2	1