
Santiago Signorelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3283396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Autophagy to Abiotic and Biotic Stress Responses. Trends in Plant Science, 2019, 24, 413-430.	8.8	203
2	Molecular Mechanisms for the Reaction Between ^{•} OH Radicals and Proline: Insights on the Role as Reactive Oxygen Species Scavenger in Plant Stress. Journal of Physical Chemistry B, 2014, 118, 37-47.	2.6	146
3	Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Science, 2013, 201-202, 137-146.	3.6	118
4	Connecting Proline and Î ³ -Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions. PLoS ONE, 2015, 10, e0115349.	2.5	112
5	γâ€Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. Plant, Cell and Environment, 2020, 43, 1103-1116.	5.7	73
6	Autophagy in Plants: Both a Puppet and a Puppet Master of Sugars. Frontiers in Plant Science, 2019, 10, 14.	3.6	67
7	Proline does not quench singlet oxygen: Evidence to reconsider its protective role in plants. Plant Physiology and Biochemistry, 2013, 64, 80-83.	5.8	66
8	The Fermentation Analogy: A Point of View for Understanding the Intriguing Role of Proline Accumulation in Stressed Plants. Frontiers in Plant Science, 2016, 7, 1339.	3.6	64
9	Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1?. Annals of Botany, 2017, 120, 495-509.	2.9	60
10	Learning To Breathe: Developmental Phase Transitions in Oxygen Status. Trends in Plant Science, 2017, 22, 140-153.	8.8	54
11	Nitric Oxide Enables Germination by a Four-Pronged Attack on ABA-Induced Seed Dormancy. Frontiers in Plant Science, 2018, 9, 296.	3.6	53
12	Regulation of Proline Accumulation and Its Molecular and Physiological Functions in Stress Defence. , 2019, , 73-97.		52
13	Proline Metabolism and Its Functions in Development and Stress Tolerance. , 2019, , 41-72.		48
14	In vivo and in vitro approaches demonstrate proline is not directly involved in the protection against superoxide, nitric oxide, nitrogen dioxide and peroxynitrite. Functional Plant Biology, 2016, 43, 870.	2.1	43
15	Developmental control of hypoxia during bud burst in grapevine. Plant, Cell and Environment, 2018, 41, 1154-1170.	5.7	43
16	Antioxidant and photosystem II responses contribute to explain the drought–heat contrasting tolerance of two forage legumes. Plant Physiology and Biochemistry, 2013, 70, 195-203.	5.8	41
17	Nitrogen dioxide solubility and permeation in lipid membranes. Archives of Biochemistry and Biophysics, 2011, 512, 190-196.	3.0	36
18	Roles for Light, Energy, and Oxygen in the Fate of Quiescent Axillary Buds. Plant Physiology, 2018, 176, 1171-1181.	4.8	35

SANTIAGO SIGNORELLI

#	Article	IF	CITATIONS
19	Strategies to revise agrosystems and breeding to control Fusarium wilt of banana. Nature Food, 2020, 1, 599-604.	14.0	32
20	Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiology, 2022, 188, 1521-1536.	4.8	26
21	Identification of Δ ¹ -pyrroline 5-carboxylate synthase (<i>P5CS</i>) genes involved in the synthesis of proline in <i>Lotus japonicus</i> . Plant Signaling and Behavior, 2017, 12, e1367464.	2.4	25
22	The Role of Nitric Oxide in Nitrogen Fixation by Legumes. Frontiers in Plant Science, 2020, 11, 521.	3.6	22
23	Drought stress triggers the accumulation of NO and SNOs in cortical cells of Lotus japonicus L. roots and the nitration of proteins with relevant metabolic function. Environmental and Experimental Botany, 2019, 161, 228-241.	4.2	21
24	The initiation of bud burst in grapevine features dynamic regulation of the apoplastic pore size. Journal of Experimental Botany, 2020, 71, 719-729.	4.8	20
25	Photosynthetic responses mediate the adaptation of two Lotus japonicus ecotypes to low temperature. Plant Science, 2016, 250, 59-68.	3.6	19
26	The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of <i>Urochloa humidicola</i> . Journal of Experimental Botany, 2021, 72, 3279-3293.	4.8	16
27	The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. Journal of Experimental Botany, 2022, 73, 2061-2076.	4.8	10
28	Editorial: Sugars and Autophagy in Plants. Frontiers in Plant Science, 2019, 10, 1190.	3.6	8
29	Endogenous [•] <scp>NO</scp> accumulation in soybean is associated with initial stomatal response to water deficit. Physiologia Plantarum, 2021, 172, 564-576.	5.2	7
30	Autophagy mutants show delayed chloroplast development during deâ€etiolation in carbon limiting conditions. Plant Journal, 2021, 108, 459-477.	5.7	6
31	GABA and Proline Metabolism in Response to Stress. Plant in Challenging Environments, 2021, , 291-314.	0.4	4
32	Rhizobium inoculants for alfalfa in acid soils: A proposal for Uruguay. Agrociencia, 2019, 23, .	0.1	4
33	Increasing complexity models for describing the generation of substrate radicals at the active site of ethanolamine ammonia-lyase/B12. Computational and Theoretical Chemistry, 2011, 975, 52-60.	2.5	3
34	Postharvest chitosan application maintains the quality of spinach through suppression of bacterial growth and elicitation. Horticulture Environment and Biotechnology, 2022, 63, 217.	2.1	3
35	Crop Performance Indexes Applied to Legume Used as Summer Cover Crops under Water Deficit Conditions. Agronomy, 2022, 12, 443.	3.0	3
36	Soil Water Content Directly Affects Bud Burst Rate in Single-Node Cuttings of Perennial Plants. Agronomy, 2022, 12, 360.	3.0	2