Francisco-Javier Gamo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3283380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465, 305-310.	27.8	870
2	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
3	Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential. Journal of Medicinal Chemistry, 2011, 54, 5540-5561.	6.4	255
4	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
5	Antimalarial efficacy of MMV390048, an inhibitor of <i>Plasmodium</i> phosphatidylinositol 4-kinase. Science Translational Medicine, 2017, 9, .	12.4	204
6	Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science, 2018, 359, 191-199.	12.6	194
7	P. falciparum In Vitro Killing Rates Allow to Discriminate between Different Antimalarial Mode-of-Action. PLoS ONE, 2012, 7, e30949.	2.5	159
8	Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .	12.6	99
9	A broad analysis of resistance development in the malaria parasite. Nature Communications, 2016, 7, 11901.	12.8	94
10	In Vitro Resistance Selections for Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors Give Mutants with Multiple Point Mutations in the Drug-binding Site and Altered Growth. Journal of Biological Chemistry, 2014, 289, 17980-17995.	3.4	54
11	Harnessing evolutionary fitness in <i>Plasmodium falciparum</i> for drug discovery and suppressing resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 799-804.	7.1	54
12	Validation of the protein kinase <i>Pf</i> CLK3 as a multistage cross-species malarial drug target. Science, 2019, 365, .	12.6	51
13	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
14	Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malaria Journal, 2015, 14, 441.	2.3	38
15	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
16	Antimalarial drug resistance: new treatments options for Plasmodium. Drug Discovery Today: Technologies, 2014, 11, 81-88.	4.0	32
17	In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Science Translational Medicine, 2019, 11, .	12.4	30
18	The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to <i>Plasmodium falciparum</i> parasite resistance. Science Translational Medicine, 2021, 13, .	12.4	25

FRANCISCO-JAVIER GAMO

#	ARTICLE	IF	CITATIONS
19	Expanding Bromodomain Targeting into Neglected Parasitic Diseases. ACS Infectious Diseases, 2021, 7, 2953-2958.	3.8	20
20	Design of proteasome inhibitors with oral efficacy in vivo against <i>Plasmodium falciparum</i> and selectivity over the human proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
21	Identification of Collateral Sensitivity to Dihydroorotate Dehydrogenase Inhibitors in <i>Plasmodium falciparum</i> . ACS Infectious Diseases, 2018, 4, 508-515.	3.8	15
22	Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio. ACS Infectious Diseases, 2018, 4, 568-576.	3.8	14
23	Discovery and Preclinical Pharmacology of INE963, a Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cures in Uncomplicated Malaria. Journal of Medicinal Chemistry, 2022, 65, 3798-3813.	6.4	14
24	Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nature Communications, 2022, 13, 2158.	12.8	13
25	Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2021, 64, 2739-2761.	6.4	10
26	Development of a Novel High-Density [³ H]Hypoxanthine Scintillation Proximity Assay To Assess Plasmodium falciparum Growth. Antimicrobial Agents and Chemotherapy, 2016, 60, 5949-5956.	3.2	9
27	Identification of Small Molecules Disrupting the Ubiquitin Proteasome System in Malaria. ACS Infectious Diseases, 2019, 5, 2105-2117.	3.8	8
28	High-Content Phenotypic Screen of a Focused TCAMS Drug Library Identifies Novel Disruptors of the Malaria Parasite Calcium Dynamics. ACS Chemical Biology, 2021, 16, 2348-2372.	3.4	4
29	High Throughput Screening to Identify Selective and Nonpeptidomimetic Proteasome Inhibitors As Antimalarials. ACS Infectious Diseases, 2021, 7, 1818-1832.	3.8	3