
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/328329/publications.pdf Version: 2024-02-01



WENDING HU

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lowâ€voltage polymerâ€dielectricâ€based organic fieldâ€effect transistors and applications. Nano Select,<br>2022, 3, 20-38.                                                                                                 | 1.9  | 15        |
| 2  | The way towards for ultraflat and superclean graphene. Nano Select, 2022, 3, 485-504.                                                                                                                                       | 1.9  | 2         |
| 3  | Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano<br>Research, 2022, 15, 2667-2673.                                                                                        | 5.8  | 12        |
| 4  | Organic Semiconductor Crystal Engineering for Highâ€Resolution Layerâ€Controlled 2D Crystal Arrays.<br>Advanced Materials, 2022, 34, e2104166.                                                                              | 11.1 | 18        |
| 5  | Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction.<br>Science China Materials, 2022, 65, 155-162.                                                                          | 3.5  | 32        |
| 6  | Enhanced redox activity and oxygen vacancies of perovskite triggered by copper incorporation for the improvement of electro-Fenton activity. Chemical Engineering Journal, 2022, 428, 131352.                               | 6.6  | 34        |
| 7  | Enhanced electron transfer and hydrogen peroxide activation capacity with N, P-codoped carbon encapsulated CeO2 in heterogeneous electro-Fenton process. Chemosphere, 2022, 287, 132154.                                    | 4.2  | 18        |
| 8  | Controllable growth of centimeter-scale 2D crystalline conjugated polymers for photonic synaptic transistors. Journal of Materials Chemistry C, 2022, 10, 2681-2689.                                                        | 2.7  | 11        |
| 9  | Molecular spinterface in F <sub>4</sub> TCNQ-doped polymer spin valves. Journal of Materials<br>Chemistry C, 2022, 10, 2608-2615.                                                                                           | 2.7  | 6         |
| 10 | Intrinsic Linear Dichroism of Organic Single Crystals toward Highâ€Performance Polarization‧ensitive<br>Photodetectors. Advanced Materials, 2022, 34, e2105665.                                                             | 11.1 | 23        |
| 11 | Colorâ€Tunable Supramolecular Luminescent Materials. Advanced Materials, 2022, 34, e2105405.                                                                                                                                | 11.1 | 74        |
| 12 | Novel machine learning framework for thermal conductivity prediction by crystal graph convolution embedded ensemble. SmartMat, 2022, 3, 474-481.                                                                            | 6.4  | 8         |
| 13 | Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature. Science China Chemistry, 2022, 65, 145-152. | 4.2  | 7         |
| 14 | The prospects of organic semiconductor single crystals for spintronic applications. Journal of Materials Chemistry C, 2022, 10, 2507-2515.                                                                                  | 2.7  | 14        |
| 15 | A two-dimensional polymer memristor based on conformational changes with tunable resistive switching behaviours. Journal of Materials Chemistry C, 2022, 10, 2631-2638.                                                     | 2.7  | 13        |
| 16 | Cocrystal engineering for constructing two-photon absorption materials by controllable intermolecular interactions. Journal of Materials Chemistry C, 2022, 10, 2562-2568.                                                  | 2.7  | 15        |
| 17 | Capillary onfinement Crystallization for Monolayer Molecular Crystal Arrays. Advanced Materials,<br>2022, 34, e2107574.                                                                                                     | 11.1 | 25        |
| 18 | Redistributed Current Density in Lateral Organic Lightâ€Emitting Transistors Enabling Uniform Area<br>Emission with Good Stability and Arbitrary Tunability. Advanced Materials, 2022, 34, e2108795.                        | 11.1 | 26        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cocrystal engineering: Tuning the charge transfer excitons for highly sensitive luminescent switching materials under multiple stimuli. Science China Materials, 2022, 65, 1320-1328.                                                   | 3.5  | 10        |
| 20 | Improving the charge injection in bottom contact organic transistors by carbon electrodes. Journal of Materials Chemistry C, 2022, 10, 2838-2844.                                                                                       | 2.7  | 5         |
| 21 | 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic<br>Functionalities. Advanced Materials, 2022, 34, e2102290.                                                                         | 11.1 | 96        |
| 22 | Growth direction dependent separate-channel charge transport in the organic weak charge-transfer<br>co-crystal of anthracene–DTTCNQ. Materials Horizons, 2022, , .                                                                      | 6.4  | 2         |
| 23 | Additiveâ€Assisted Growth of Scaled and Quality 2D Materials. Small, 2022, 18, e2107241.                                                                                                                                                | 5.2  | 11        |
| 24 | Hexavalent Chromium as a Smart Switch for Peroxidase-like Activity Regulation via the Surface<br>Electronic Redistribution of Silver Nanoparticles Anchored on Carbon Spheres. Analytical Chemistry,<br>2022, 94, 1669-1677.            | 3.2  | 13        |
| 25 | Polycyclic aromatic hydrocarbon-based organic semiconductors: ring-closing synthesis and optoelectronic properties. Journal of Materials Chemistry C, 2022, 10, 2411-2430.                                                              | 2.7  | 42        |
| 26 | Asymmetric Chemical Functionalization of Top ontact Electrodes: Tuning the Charge Injection for<br>Highâ€Performance MoS <sub>2</sub> Fieldâ€Effect Transistors and Schottky Diodes. Advanced Materials,<br>2022, 34, e2109445.         | 11.1 | 17        |
| 27 | Recent Advances in Growth of Transition Metal Carbides and Nitrides (MXenes) Crystals. Advanced<br>Functional Materials, 2022, 32, .                                                                                                    | 7.8  | 43        |
| 28 | Soft template-assisted self-assembly: a general strategy toward two-dimensional molecular crystals<br>for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10,<br>2575-2580.                  | 2.7  | 5         |
| 29 | Generated Mercury(I) as a Peroxidase-like Activity Modulator via Stimulating the Expression of Active<br>Sites of Silver Nanoparticles for Environmental Hg <sup>2+</sup> Detection. ACS Applied Nano<br>Materials, 2022, 5, 2048-2056. | 2.4  | 7         |
| 30 | Coherently degenerate state engineering of organic small molecule materials to generate Wannier excitons. Chemical Physics Impact, 2022, 4, 100062.                                                                                     | 1.7  | 3         |
| 31 | A Centrosymmetric Organic Semiconductor with Donor–Acceptor Interaction for Highly Photostable<br>Organic Transistors. Advanced Functional Materials, 2022, 32, .                                                                       | 7.8  | 10        |
| 32 | Perspectives of ionic covalent organic frameworks for rechargeable batteries. Coordination Chemistry Reviews, 2022, 458, 214431.                                                                                                        | 9.5  | 27        |
| 33 | Iron regulates the interfacial charge distribution of transition metal phosphides for enhanced oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 615, 725-731.                                                 | 5.0  | 16        |
| 34 | Reaction site exchange in hierarchical bimetallic Mn/Ni catalysts triggered by the electron pump<br>effect to boost urea electrocatalytic oxidation. Journal of Materials Chemistry A, 2022, 10, 10417-10426.                           | 5.2  | 23        |
| 35 | Recent progress in polymer-based infrared photodetectors. Journal of Materials Chemistry C, 2022, 10, 13312-13323.                                                                                                                      | 2.7  | 28        |
| 36 | Research on Key Materials and Devices of Organic Light-emitting Transistors <sup>※</sup> . Acta Chimica<br>Sinica, 2022, 80, 327.                                                                                                       | 0.5  | 6         |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | An activatable DNA nanodevice for correlated imaging of apoptosis-related dual proteins. Nanoscale, 2022, 14, 6465-6470.                                                                                                 | 2.8  | 9         |
| 38 | High-efficiency photocatalytic degradation of rhodamine 6G by organic semiconductor<br>tetrathiafulvalene in weak acid–base environment. Chemical Communications, 2022, 58, 4251-4254.                                   | 2.2  | 9         |
| 39 | Bandâ€Like Charge Transport in Smallâ€Molecule Thin Film toward Highâ€Performance Organic<br>Phototransistors at Low Temperature. Advanced Optical Materials, 2022, 10, .                                                | 3.6  | 4         |
| 40 | Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 4345-4358.                                                                                      | 3.2  | 21        |
| 41 | Polymer Electrolyte Dielectrics Enable Efficient Exciton-Polaron Quenching in Organic<br>Semiconductors for Photostable Organic Transistors. ACS Applied Materials & Interfaces, 2022, 14,<br>13584-13592.               | 4.0  | 13        |
| 42 | Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics.<br>Science, 2022, 375, 1411-1417.                                                                                      | 6.0  | 230       |
| 43 | Negative Phototransistors with Ultrahigh Sensitivity and Weak‣ight Detection Based on 1D/2D<br>Molecular Crystal p–n Heterojunctions and their Application in Light Encoders. Advanced Materials,<br>2022, 34, e2201364. | 11.1 | 26        |
| 44 | Integrating Unexpected High Charge arrier Mobility and Lowâ€Threshold Lasing Action in an Organic<br>Semiconductor. Angewandte Chemie, 2022, 134, .                                                                      | 1.6  | 1         |
| 45 | Integrating Unexpected High Charge arrier Mobility and Lowâ€Threshold Lasing Action in an Organic<br>Semiconductor. Angewandte Chemie - International Edition, 2022, 61, .                                               | 7.2  | 11        |
| 46 | BNâ€Anthracene for Highâ€Mobility Organic Optoelectronic Materials through Periphery Engineering.<br>Angewandte Chemie, 2022, 134, .                                                                                     | 1.6  | 14        |
| 47 | Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime. Nature Communications, 2022, 13, 1480.                                                                | 5.8  | 26        |
| 48 | Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures.<br>Nano Research, 2022, 15, 7861-7867.                                                                                      | 5.8  | 30        |
| 49 | BNâ€Anthracene for Highâ€Mobility Organic Optoelectronic Materials through Periphery Engineering.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                              | 7.2  | 43        |
| 50 | Multi-stage anisotropic etching of two-dimensional heterostructures. Nano Research, 2022, 15,<br>4909-4915.                                                                                                              | 5.8  | 6         |
| 51 | Construction and nanotribological study of a glassy covalent organic network on surface. Nano<br>Research, 2022, 15, 4682-4686.                                                                                          | 5.8  | 3         |
| 52 | Pathway Manipulation via Ni, Co, and V Ternary Synergism to Realize High Efficiency for Urea<br>Electrocatalytic Oxidation. ACS Catalysis, 2022, 12, 569-579.                                                            | 5.5  | 101       |
| 53 | Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano<br>Research, 2022, 15, 3647-3652.                                                                                           | 5.8  | 5         |
| 54 | Recent advances in the controlled chemical vapor deposition growth of bilayer 2D single crystals.<br>Journal of Materials Chemistry C, 2022, 10, 13324-13350.                                                            | 2.7  | 10        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | High-performance five-ring-fused organic semiconductors for field-effect transistors. Chemical Society Reviews, 2022, 51, 3071-3122.                                                                                | 18.7 | 49        |
| 56 | A single level tunneling model for molecular junctions: evaluating the simulation methods. Physical<br>Chemistry Chemical Physics, 2022, 24, 11958-11966.                                                           | 1.3  | 2         |
| 57 | Single Molecule Level and Label-Free Determination of Multibiomarkers with an Organic Field-Effect<br>Transistor Platform in Early Cancer Diagnosis. Analytical Chemistry, 2022, 94, 6615-6620.                     | 3.2  | 10        |
| 58 | High mobility n-type organic semiconductors with tunable exciton dynamics toward photo-stable and photo-sensitive transistors. Journal of Materials Chemistry C, 2022, 10, 8874-8880.                               | 2.7  | 4         |
| 59 | Oxygen-Assisted Anisotropic Chemical Etching of MoSe <sub>2</sub> for Enhanced Phototransistors.<br>Chemistry of Materials, 2022, 34, 4212-4223.                                                                    | 3.2  | 10        |
| 60 | Near-Amorphous Conjugated Polymers: An Emerging Class of Semiconductors for Flexible Electronics. , 2022, 4, 1112-1123.                                                                                             |      | 14        |
| 61 | Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors.<br>Crystals, 2022, 12, 651.                                                                                             | 1.0  | 5         |
| 62 | Nonâ€Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic<br>Semiconductors: A Case Study on Indolo[2,3â€a]carbazole. Angewandte Chemie - International Edition,<br>2022, 61, . | 7.2  | 7         |
| 63 | Nonâ€Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic<br>Semiconductors: A Case Study on Indolo[2,3â€a]carbazole. Angewandte Chemie, 2022, 134, .                           | 1.6  | 3         |
| 64 | TCNQ-based organic cocrystal integrated red emission and n-type charge transport. Frontiers of Optoelectronics, 2022, 15, .                                                                                         | 1.9  | 5         |
| 65 | Octahedron of zero-valent and mono-valent copper anchored on nitrogen doping porous carbon to<br>enhance heterogeneous electro-Fenton like activity. Journal of Water Process Engineering, 2022, 47,<br>102803.     | 2.6  | 5         |
| 66 | In Situ Synthesis of Organopolysulfides Enabling Spatial and Kinetic Co-Mediation of Sulfur<br>Chemistry. ACS Nano, 2022, 16, 9163-9171.                                                                            | 7.3  | 13        |
| 67 | A Small Molecular Symmetric Allâ€Organic Lithiumâ€lon Battery. Angewandte Chemie - International<br>Edition, 2022, 61, .                                                                                            | 7.2  | 37        |
| 68 | Low-power high-mobility organic single-crystal field-effect transistor. Science China Materials, 2022,<br>65, 2779-2785.                                                                                            | 3.5  | 6         |
| 69 | Fluorinated Dielectricsâ€Modulated Organic Phototransistors and Flexible Image Sensors. Advanced<br>Optical Materials, 2022, 10, .                                                                                  | 3.6  | 7         |
| 70 | An organic cocrystal based on phthalocyanine with ideal packing mode towards high-performance ambipolar property. Journal of Materials Chemistry C, 2022, 10, 9596-9601.                                            | 2.7  | 4         |
| 71 | The flexible sensors based on organic field-effect transistors: materials, mechanisms, and applications. Scientia Sinica Chimica, 2022, 52, 2080-2091.                                                              | 0.2  | 1         |
| 72 | Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting<br>transistors. Science Advances, 2022, 8, .                                                                     | 4.7  | 31        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Excited State Properties of Aggregationâ€Induced Delayed Fluorescence Molecules: A Microscopic<br>Insight. Advanced Optical Materials, 2022, 10, .                                                                              | 3.6  | 2         |
| 74 | DPA-MoS <sub>2</sub> van der Waals Heterostructures for Ambipolar Transistor and<br>Wavelength-dependent Photodetection. , 2022, 4, 1483-1492.                                                                                  |      | 4         |
| 75 | Molecular cocrystal odyssey to unconventional electronics and photonics. Science Bulletin, 2021, 66, 512-520.                                                                                                                   | 4.3  | 25        |
| 76 | Polymorph and anisotropic Raman spectroscopy of Phz-H2ca cocrystals. Science China Materials, 2021,<br>64, 169-178.                                                                                                             | 3.5  | 4         |
| 77 | Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission.<br>Angewandte Chemie, 2021, 133, 285-293.                                                                                     | 1.6  | 7         |
| 78 | Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission.<br>Angewandte Chemie - International Edition, 2021, 60, 281-289.                                                              | 7.2  | 33        |
| 79 | Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Research, 2021, 14, 304-310.                                                                                                                     | 5.8  | 10        |
| 80 | Exciton Transport in Molecular Semiconductor Crystals for Spinâ€Optoelectronics Paradigm.<br>Chemistry - A European Journal, 2021, 27, 222-227.                                                                                 | 1.7  | 8         |
| 81 | Recent Advances in Growth of Largeâ€5ized 2D Single Crystals on Cu Substrates. Advanced Materials,<br>2021, 33, e2003956.                                                                                                       | 11.1 | 26        |
| 82 | Short Alkyl Chain Engineering Modulation on Naphthalene Flanked Diketopyrrolopyrrole toward<br>Highâ€Performance Single Crystal Transistors and Organic Thin Film Displays. Advanced Electronic<br>Materials, 2021, 7, 2000804. | 2.6  | 18        |
| 83 | Copper Tetracyanoquinodimethane: From Micro/Nanostructures to Applications. Small, 2021, 17, e2004143.                                                                                                                          | 5.2  | 9         |
| 84 | A Fe–Ni <sub>5</sub> P <sub>4</sub> /Fe–Ni <sub>2</sub> P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 1221-1229.                               | 5.2  | 33        |
| 85 | Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for<br>Broadband Photodetection. Angewandte Chemie - International Edition, 2021, 60, 6344-6350.                                         | 7.2  | 43        |
| 86 | Research progress of rubrene as an excellent multifunctional organic semiconductor. Frontiers of Physics, 2021, 16, 1.                                                                                                          | 2.4  | 14        |
| 87 | Eggshell-inspired membrane—shell strategy for simultaneously improving the sensitivity and detection range of strain sensors. Science China Materials, 2021, 64, 717-726.                                                       | 3.5  | 17        |
| 88 | Organic photoelectric materials for X-ray and gamma ray detection: mechanism, material preparation and application. Journal of Materials Chemistry C, 2021, 9, 4709-4729.                                                       | 2.7  | 27        |
| 89 | Highâ€Quality Twoâ€Dimensional Metalâ€Organic Framework Nanofilms for Nonvolatile Memristive<br>Switching. Small Structures, 2021, 2, 2000077.                                                                                  | 6.9  | 24        |
| 90 | Long afterglow MOFs: a frontier study on synthesis and applications. Materials Chemistry Frontiers, 2021, 5, 6824-6849.                                                                                                         | 3.2  | 26        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering. Nature Communications, 2021, 12, 21.                     | 5.8 | 51        |
| 92  | Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. Chemical Communications, 2021, 57, 2669-2672.                           | 2.2 | 11        |
| 93  | One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays. , 2021, 3, 217-223.                                                                                                    |     | 8         |
| 94  | Boronic ester Sierpiński triangle fractals: from precursor design to on-surface synthesis and self-assembling superstructures. Chemical Communications, 2021, 57, 2065-2068.           | 2.2 | 7         |
| 95  | The external electric field effect on the charge transport performance of organic semiconductors: a theoretical investigation. Journal of Materials Chemistry A, 2021, 9, 21044-21050. | 5.2 | 11        |
| 96  | An intermolecular hydrogen bond plays a determining role in product selection of a surface confined Schiff-base reaction. Chemical Communications, 2021, 57, 6495-6498.                | 2.2 | 2         |
| 97  | Few-layered two-dimensional molecular crystals for organic artificial visual memories with record-high photoresponse. Journal of Materials Chemistry C, 2021, 9, 8834-8841.            | 2.7 | 10        |
| 98  | Stencil mask defined doctor blade printing of organic single crystal arrays for high-performance organic field-effect transistors. Materials Chemistry Frontiers, 2021, 5, 3236-3245.  | 3.2 | 10        |
| 99  | Small molecule-doped organic crystals towards long-persistent luminescence in water and air.<br>Journal of Materials Chemistry C, 2021, 9, 5093-5097.                                  | 2.7 | 16        |
| 100 | 2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic<br>field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5758-5764.   | 2.7 | 12        |
| 101 | Engineering the Interfacial Materials of Organic Field-Effect Transistors for Efficient Charge<br>Transport. Accounts of Materials Research, 2021, 2, 159-169.                         | 5.9 | 13        |
| 102 | Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. Journal of Physical Chemistry Letters, 2021, 12, 1612-1630.                       | 2.1 | 55        |
| 103 | Tailoring the strength and number of halogen bonds toward room temperature phosphorescent<br>microâ€cocrystals. Nano Select, 2021, 2, 1509-1516.                                       | 1.9 | 2         |
| 104 | Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for<br>Broadband Photodetection. Angewandte Chemie, 2021, 133, 6414-6420.                       | 1.6 | 5         |
| 105 | Verticalâ€organicâ€nanocrystalâ€arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.                                | 6.4 | 73        |
| 106 | Electron configurations at 3d orbital of metal ion determining charge transition process in memory devices. Science China Materials, 2021, 64, 1713-1722.                              | 3.5 | 7         |
| 107 | Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer<br>Diagnosis. Analytical Chemistry, 2021, 93, 6188-6194.                            | 3.2 | 35        |
| 108 | Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal.<br>Chinese Chemical Letters, 2021, 32, 3007-3010.                                 | 4.8 | 20        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Effect of contact resistance in organic fieldâ€effect transistors. Nano Select, 2021, 2, 1661-1681.                                                                                                                               | 1.9  | 18        |
| 110 | Organic thin film transistorsâ€based biosensors. EcoMat, 2021, 3, e12094.                                                                                                                                                         | 6.8  | 52        |
| 111 | Dual-function surfactant strategy for two-dimensional organic semiconductor crystals towards high-performance organic field-effect transistors. Science China Chemistry, 2021, 64, 1057-1062.                                     | 4.2  | 12        |
| 112 | Functionalization of Lowâ€k Polyimide Gate Dielectrics with Selfâ€Assembly Monolayer Toward<br>Highâ€Performance Organic Fieldâ€Effect Transistors and Circuits. Advanced Materials Interfaces, 2021, 8,<br>2100217.              | 1.9  | 8         |
| 113 | 2D MXene–Molecular Hybrid Additive for Highâ€Performance Ambipolar Polymer Fieldâ€Effect Transistors<br>and Logic Gates. Advanced Materials, 2021, 33, e2008215.                                                                  | 11.1 | 26        |
| 114 | 1D Mixedâ€ <b>S</b> tack Cocrystals Based on Perylene Diimide toward Ambipolar Charge Transport. Small, 2021,<br>17, e2006574.                                                                                                    | 5.2  | 19        |
| 115 | Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ<br>Polymerization in Microchannels for High-Performance Organic Transistors. ACS Applied Materials<br>& Interfaces, 2021, 13, 17852-17860. | 4.0  | 21        |
| 116 | Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal<br>Anodes. Angewandte Chemie - International Edition, 2021, 60, 10871-10879.                                                   | 7.2  | 89        |
| 117 | Sequence modulation of tunneling barrier and charge transport across histidine doped oligo-alanine molecular junctions. Chinese Chemical Letters, 2021, 32, 3782-3786.                                                            | 4.8  | 1         |
| 118 | The More, the Better–Recent Advances in Construction of 2D Multiâ€Heterostructures. Advanced<br>Functional Materials, 2021, 31, 2102049.                                                                                          | 7.8  | 27        |
| 119 | Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal<br>Anodes. Angewandte Chemie, 2021, 133, 10966-10974.                                                                          | 1.6  | 11        |
| 120 | Revealing molecular conformation–induced stress at embedded interfaces of organic optoelectronic devices by sum frequency generation spectroscopy. Science Advances, 2021, 7, .                                                   | 4.7  | 29        |
| 121 | Sub-5 nm single crystalline organic p–n heterojunctions. Nature Communications, 2021, 12, 2774.                                                                                                                                   | 5.8  | 39        |
| 122 | p-n heterojunctions composed of two-dimensional molecular crystals for high-performance ambipolar organic field-effect transistors. APL Materials, 2021, 9, 051108.                                                               | 2.2  | 8         |
| 123 | Bandgap Engineering of an Aryl-Fused Tetrathianaphthalene for Visible-Blind Organic Field-Effect<br>Transistors. Frontiers in Chemistry, 2021, 9, 698246.                                                                         | 1.8  | 2         |
| 124 | Organic Lightâ€Emitting Transistors Entering a New Development Stage. Advanced Materials, 2021, 33,<br>e2007149.                                                                                                                  | 11.1 | 99        |
| 125 | Recent Advances of Nanospheres Lithography in Organic Electronics. Small, 2021, 17, e2100724.                                                                                                                                     | 5.2  | 17        |
| 126 | Prominent role of oxygen vacancy for superoxide radical and hydroxyl radical formation to promote electro-Fenton like reaction by W-doped CeO2 composites. Applied Surface Science, 2021, 549, 149262.                            | 3.1  | 55        |

| #   | Article                                                                                                                                                                                                  | IF               | CITATIONS   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 127 | Tandem catalysis in electrochemical CO2 reduction reaction. Nano Research, 2021, 14, 4471-4486.                                                                                                          | 5.8              | 105         |
| 128 | Spin injection and transport in single-crystalline organic spin valves based on TIPS-pentacene. Science<br>China Materials, 2021, 64, 2795-2804.                                                         | 3.5              | 5           |
| 129 | Molecular Weight Engineering in Highâ€Performance Ambipolar Emissive Mesopolymers. Angewandte<br>Chemie - International Edition, 2021, 60, 14902-14908.                                                  | 7.2              | 28          |
| 130 | Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. Science China Chemistry, 2021, 64, 1410-1416.                                                 | 4.2              | 19          |
| 131 | Isomeric Dibenzoheptazethrenes for Air‣table Organic Fieldâ€Effect Transistors. Angewandte Chemie,<br>2021, 133, 16366-16372.                                                                            | 1.6              | 14          |
| 132 | Molecular Weight Engineering in Highâ€Performance Ambipolar Emissive Mesopolymers. Angewandte<br>Chemie, 2021, 133, 15028-15034.                                                                         | 1.6              | 5           |
| 133 | Nanospheres Lithography: Recent Advances of Nanospheres Lithography in Organic Electronics (Small) Tj ETQq1 I                                                                                            | l 0.78431<br>5.2 | 4_rgBT /Ov∈ |
| 134 | Successive Storage of Cations and Anions by Ligands of π–dâ€Conjugated Coordination Polymers<br>Enabling Robust Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 18769-18776. | 7.2              | 86          |
| 135 | Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand<br>Displacement Reactions. Angewandte Chemie - International Edition, 2021, 60, 17937-17941.                    | 7.2              | 67          |
| 136 | Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand<br>Displacement Reactions. Angewandte Chemie, 2021, 133, 18081-18085.                                           | 1.6              | 14          |
| 137 | Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker<br>Determination. Analytical Chemistry, 2021, 93, 11305-11311.                                          | 3.2              | 12          |
| 138 | Patterning organic semiconductor crystals for optoelectronics. Applied Physics Letters, 2021, 119, .                                                                                                     | 1.5              | 7           |
| 139 | High Mobility Organic Lasing Semiconductor with Crystallizationâ€Enhanced Emission for<br>Lightâ€Emitting Transistors. Angewandte Chemie, 2021, 133, 20436-20441.                                        | 1.6              | 5           |
| 140 | Ternary Conductance Switching Realized by a Pillar[5]areneâ€Functionalized Twoâ€Dimensional Imine<br>Polymer Film. Chemistry - A European Journal, 2021, 27, 13605-13612.                                | 1.7              | 8           |
| 141 | High Mobility Organic Lasing Semiconductor with Crystallizationâ€Enhanced Emission for<br>Lightâ€Emitting Transistors. Angewandte Chemie - International Edition, 2021, 60, 20274-20279.                 | 7.2              | 23          |
| 142 | Study of the Redox Potentials of Benzoquinone and Its Derivatives by Combining Electrochemistry and Computational Chemistry. Journal of Chemical Education, 2021, 98, 3019-3025.                         | 1.1              | 4           |
| 143 | Organic Lightâ€Emitting Transistors: Organic Lightâ€Emitting Transistors Entering a New Development<br>Stage (Adv. Mater. 31/2021). Advanced Materials, 2021, 33, 2170245.                               | 11.1             | 0           |
| 144 | Organic Semiconductor Single Crystals for Xâ€ray Imaging. Advanced Materials, 2021, 33, e2104749.                                                                                                        | 11.1             | 43          |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Special issue dedicated to Professor Daoben Zhu on the occasion of his 80th birthday. SmartMat, 2021, 2, 251-251.                                                                                                                | 6.4  | 0         |
| 146 | Organic Field Effect Transistorâ€Based Photonic Synapses: Materials, Devices, and Applications.<br>Advanced Functional Materials, 2021, 31, 2106151.                                                                             | 7.8  | 67        |
| 147 | A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. EScience, 2021, 1, 60-68.                                                                      | 25.0 | 72        |
| 148 | Photophysical tuning of small-molecule-doped organic crystals with long-persistent luminescence by variation of dopants. Dyes and Pigments, 2021, 193, 109501.                                                                   | 2.0  | 6         |
| 149 | Modulated Rectification of Carboxylate-Terminated Self-Assembled Monolayer Junction by Humidity<br>and Alkali Metal Ions: The Coupling and Asymmetric Factor Matter. Journal of Physical Chemistry C,<br>2021, 125, 21614-21623. | 1.5  | 12        |
| 150 | Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices:<br>Advances and Perspectives. Advanced Materials, 2021, 33, e2100704.                                                                | 11.1 | 72        |
| 151 | Preparation and assessment of reliable organic spin valves. Organic Electronics, 2021, 99, 106311.                                                                                                                               | 1.4  | 9         |
| 152 | A general route towards two-dimensional organic crystal-based functional fibriform transistors for wearable electronic textiles. Journal of Materials Chemistry C, 2021, 9, 472-480.                                             | 2.7  | 8         |
| 153 | The effect of electron-withdrawing substituents in asymmetric anthracene derivative semiconductors. Journal of Materials Chemistry C, 2021, 9, 4217-4222.                                                                        | 2.7  | 6         |
| 154 | When graphene meets white graphene – recent advances in the construction of graphene and<br><i>h</i> BN heterostructures. Nanoscale, 2021, 13, 13174-13194.                                                                      | 2.8  | 9         |
| 155 | <i>In situ</i> observation of organic single micro-crystal fabrication by solvent vapor annealing.<br>Journal of Materials Chemistry C, 2021, 9, 9124-9129.                                                                      | 2.7  | 5         |
| 156 | Low-fouling CNT-PEG-hydrogel coated quartz crystal microbalance sensor for saliva glucose detection. RSC Advances, 2021, 11, 22556-22564.                                                                                        | 1.7  | 9         |
| 157 | Cornerstone of molecular spintronics: Strategies for reliable organic spin valves. Nano Research, 2021, 14, 3653-3668.                                                                                                           | 5.8  | 15        |
| 158 | Armadillo-inspired micro-foldable metal electrodes with a negligible resistance change under large stretchability. Journal of Materials Chemistry C, 2021, 9, 4046-4052.                                                         | 2.7  | 1         |
| 159 | Design of thermally activated delayed fluorescent emitters for organic solid-state microlasers.<br>Journal of Materials Chemistry C, 2021, 9, 7400-7406.                                                                         | 2.7  | 18        |
| 160 | Heterochelation boosts sodium storage in π-d conjugated coordination polymers. Energy and<br>Environmental Science, 2021, 14, 6514-6525.                                                                                         | 15.6 | 24        |
| 161 | Recent Advances in Interface Engineering for Electrocatalytic CO2 Reduction Reaction. Nano-Micro Letters, 2021, 13, 216.                                                                                                         | 14.4 | 58        |
| 162 | Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport<br>Properties. Langmuir, 2021, 37, 12223-12233.                                                                                      | 1.6  | 2         |

| #   | Article                                                                                                                                                                                                                            | lF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic<br>Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.                              | 6.6 | 17        |
| 164 | Organic Field-Effect Transistor-Based Biosensors with Enhanced Sensitivity and Reliability under<br>Illumination for Carcinoembryonic Antigen Bioassay. Analytical Chemistry, 2021, 93, 15167-15174.                               | 3.2 | 8         |
| 165 | Self-Assembly Graphene Arrays on a Liquid Cu–Ag Alloy. Chemistry of Materials, 2021, 33, 8649-8655.                                                                                                                                | 3.2 | 6         |
| 166 | Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. Journal of the American Chemical Society, 2021, 143, 19243-19256.                                                           | 6.6 | 84        |
| 167 | Solution-processed crystalline organic integrated circuits. Matter, 2021, 4, 3415-3443.                                                                                                                                            | 5.0 | 9         |
| 168 | Recent progress on organic exciplex materials with different donor–acceptor contacting modes for<br>luminescent applications. Journal of Materials Chemistry C, 2021, 9, 16843-16858.                                              | 2.7 | 30        |
| 169 | Continuous orientated growth of scaled single-crystal 2D monolayer films. Nanoscale Advances, 2021, 3, 6545-6567.                                                                                                                  | 2.2 | 3         |
| 170 | Constructing Cu <sub>2</sub> O/Bi <sub>2</sub> MoO <sub>6</sub> p–n heterojunction towards<br>boosted photo-assisted-electro-Fenton-like synergy degradation of ciprofloxacin. Environmental<br>Science: Nano, 2021, 8, 3629-3642. | 2.2 | 8         |
| 171 | Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. Applied Physics Letters, 2021, 119, .                                                                                                        | 1.5 | 3         |
| 172 | Organic Cocrystals: Recent Advances and Perspectives for Electronic and Magnetic Applications.<br>Frontiers in Chemistry, 2021, 9, 764628.                                                                                         | 1.8 | 14        |
| 173 | Das Aufkommen der organischen Einkristallelektronik. Angewandte Chemie, 2020, 132, 1424-1445.                                                                                                                                      | 1.6 | 14        |
| 174 | The Emergence of Organic Singleâ€Crystal Electronics. Angewandte Chemie - International Edition, 2020, 59, 1408-1428.                                                                                                              | 7.2 | 153       |
| 175 | The analysis of charge transport mechanism in molecular junctions based on current-voltage characteristics. Chemical Physics, 2020, 528, 110514.                                                                                   | 0.9 | 21        |
| 176 | Recent Progress in Organic Phototransistors: Semiconductor Materials, Device Structures and Optoelectronic Applications. ChemPhotoChem, 2020, 4, 9-38.                                                                             | 1.5 | 53        |
| 177 | Two-dimensional organic single-crystalline p-n junctions for ambipolar field transistors. Science<br>China Materials, 2020, 63, 122-127.                                                                                           | 3.5 | 11        |
| 178 | Two-dimensional conjugated polymers synthesized via on-surface chemistry. Science China Materials,<br>2020, 63, 172-176.                                                                                                           | 3.5 | 9         |
| 179 | Highly Efficient Charge Transport in a Quasiâ€Monolayer Semiconductor on Pure Polymer Dielectric.<br>Advanced Functional Materials, 2020, 30, 1907153.                                                                             | 7.8 | 12        |
| 180 | 2D Semiconducting Metal–Organic Framework Thin Films for Organic Spin Valves. Angewandte<br>Chemie, 2020, 132, 1134-1139.                                                                                                          | 1.6 | 30        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | 2D Semiconducting Metal–Organic Framework Thin Films for Organic Spin Valves. Angewandte Chemie<br>- International Edition, 2020, 59, 1118-1123.                                                                                                | 7.2  | 172       |
| 182 | Surface-grafting polymers: from chemistry to organic electronics. Materials Chemistry Frontiers, 2020, 4, 692-714.                                                                                                                              | 3.2  | 84        |
| 183 | Persistent organic room temperature phosphorescence: what is the role of molecular dimers?.<br>Chemical Science, 2020, 11, 833-838.                                                                                                             | 3.7  | 94        |
| 184 | Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted<br>Zipper-mode Double C-H Activation. Chemical Research in Chinese Universities, 2020, 36, 110-114.                                                    | 1.3  | 2         |
| 185 | DFT Mechanistic Account for the Site Selectivity of Electron-Rich C(sp <sup>3</sup> )–H Bond in the Manganese-Catalyzed Aminations. Organic Letters, 2020, 22, 453-457.                                                                         | 2.4  | 25        |
| 186 | Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chemical Society Reviews, 2020, 49, 653-670.                                                                                          | 18.7 | 246       |
| 187 | Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors. Chemical Research in Chinese Universities, 2020, 36, 68-73.                                               | 1.3  | 53        |
| 188 | Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale, 2020, 12, 4219-4237.                                                                                                                                          | 2.8  | 49        |
| 189 | Application of organic–graphene hybrids in high performance photodetectors. Materials Chemistry<br>Frontiers, 2020, 4, 354-368.                                                                                                                 | 3.2  | 16        |
| 190 | Relieving the Photosensitivity of Organic Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e1906122.                                                                                                                                    | 11.1 | 61        |
| 191 | High-mobility thienothiophene integrating strong emission and high photoresponsivity for multifunctional optoelectronic applications. Organic Electronics, 2020, 87, 105941.                                                                    | 1.4  | 8         |
| 192 | High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes. Journal of Materials Chemistry C, 2020, 8, 15219-15223.                                                               | 2.7  | 23        |
| 193 | Enhanced ambipolar charge transport for efficient organic single crystal light-emitting transistors with a narrowed ambipolar regime. Journal of Materials Chemistry C, 2020, 8, 16333-16338.                                                   | 2.7  | 9         |
| 194 | Organic Fieldâ€Effect Transistors: Challenges and Emerging Opportunities in Highâ€Mobility and<br>Lowâ€Energyâ€Consumption Organic Fieldâ€Effect Transistors (Adv. Energy Mater. 29/2020). Advanced<br>Energy Materials, 2020, 10, 2070126.     | 10.2 | 2         |
| 195 | Polymer mask-weakening grain-boundary effect: towards high-performance organic thin-film<br>transistors with mobility closing to 20 cm <sup>2</sup> V <sup>â^'1</sup> s <sup>â^'1</sup> . Materials<br>Chemistry Frontiers, 2020, 4, 2990-2994. | 3.2  | 7         |
| 196 | Layered Perovskite (CH <sub>3</sub> NH <sub>3</sub> ) <sub>2</sub> Pb(SCN) <sub>2</sub> I <sub>2</sub><br>Single Crystals: Phase Transition and Moisture Stability. ACS Applied Materials & Interfaces, 2020,<br>12, 37713-37721.               | 4.0  | 20        |
| 197 | High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. Nanoscale, 2020, 12, 18371-18378.                                                                                      | 2.8  | 23        |
| 198 | Highly adhesive, washable and stretchable on-skin electrodes based on polydopamine and silk fibroin<br>for ambulatory electrocardiography sensing. Journal of Materials Chemistry C, 2020, 8, 12257-12264.                                      | 2.7  | 21        |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Model Study on the Ideal Current–Voltage Characteristics and Rectification Performance of a<br>Molecular Rectifier under Single-Level-Based Tunneling and Hopping Transport. Journal of Physical<br>Chemistry C, 2020, 124, 24408-24419. | 1.5  | 8         |
| 200 | Substitution site effect of naphthyl substituted anthracene derivatives and their applications in organic optoelectronics. Journal of Materials Chemistry C, 2020, 8, 15597-15602.                                                       | 2.7  | 6         |
| 201 | A Low-Temperature Solution-Process High-k Dielectric for High-Performance Flexible Organic<br>Field-Effect Transistors. Frontiers in Materials, 2020, 7, .                                                                               | 1.2  | 10        |
| 202 | Molecular doped organic semiconductor crystals for optoelectronic device applications. Journal of<br>Materials Chemistry C, 2020, 8, 14996-15008.                                                                                        | 2.7  | 25        |
| 203 | The effect of thickness on the optoelectronic properties of organic field-effect transistors: towards molecular crystals at monolayer limit. Journal of Materials Chemistry C, 2020, 8, 13154-13168.                                     | 2.7  | 34        |
| 204 | Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. Science China Chemistry, 2020, 63, 973-979.                                                             | 4.2  | 3         |
| 205 | Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. ACS Central Science, 2020, 6, 636-652.                                                             | 5.3  | 53        |
| 206 | Oneâ€Pot Domino Carbonylation Protocol for Aromatic Diimides toward nâ€Type Organic<br>Semiconductors. Angewandte Chemie - International Edition, 2020, 59, 14024-14028.                                                                 | 7.2  | 39        |
| 207 | Continuous and highly ordered organic semiconductor thin films via dip-coating: the critical role of meniscus angle. Science China Materials, 2020, 63, 1257-1264.                                                                       | 3.5  | 10        |
| 208 | Oneâ€Pot Domino Carbonylation Protocol for Aromatic Diimides toward nâ€Type Organic<br>Semiconductors. Angewandte Chemie, 2020, 132, 14128-14132.                                                                                        | 1.6  | 7         |
| 209 | Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Research, 2020, 13, 1976-1981.                                                                                                                   | 5.8  | 27        |
| 210 | Stable Olympicenyl Radicals and Their π-Dimers. Journal of the American Chemical Society, 2020, 142, 11022-11031.                                                                                                                        | 6.6  | 63        |
| 211 | Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C, 2020, 8, 10868-10879.                                                  | 2.7  | 18        |
| 212 | Challenges and Emerging Opportunities in Highâ€Mobility and Lowâ€Energy onsumption Organic<br>Fieldâ€Effect Transistors. Advanced Energy Materials, 2020, 10, 2000955.                                                                   | 10.2 | 63        |
| 213 | Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors.<br>Biosensors and Bioelectronics, 2020, 164, 112251.                                                                                   | 5.3  | 33        |
| 214 | Self-polarized Poly(vinylidene fluoride) Ultrathin Film and Its Piezo/Ferroelectric Properties. ACS<br>Applied Materials & Interfaces, 2020, 12, 29818-29825.                                                                            | 4.0  | 12        |
| 215 | Organic–Inorganic Hybrid Nanomaterials for Electrocatalytic CO <sub>2</sub> Reduction. Small, 2020, 16, e2001847.                                                                                                                        | 5.2  | 79        |
| 216 | Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue<br>Lasing Characteristics. Journal of the American Chemical Society, 2020, 142, 6332-6339.                                                | 6.6  | 90        |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | A donor–acceptor type macrocycle: toward photolyzable self-assembly. Chemical Communications, 2020, 56, 3939-3942.                                                                                      | 2.2  | 5         |
| 218 | Twoâ€Đimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic<br>Device Applications. Angewandte Chemie - International Edition, 2020, 59, 9403-9407.              | 7.2  | 56        |
| 219 | Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar<br>Cells. ACS Applied Materials & Interfaces, 2020, 12, 15456-15463.                                  | 4.0  | 16        |
| 220 | Twoâ€Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic<br>Device Applications. Angewandte Chemie, 2020, 132, 9489-9493.                                     | 1.6  | 12        |
| 221 | Epitaxial Growth of Nanorod Meshes from Luminescent Organic Cocrystals via Crystal<br>Transformation. Journal of the American Chemical Society, 2020, 142, 7265-7269.                                   | 6.6  | 30        |
| 222 | Recent Advances in Atomic‣evel Engineering of Nanostructured Catalysts for Electrochemical<br>CO <sub>2</sub> Reduction. Advanced Functional Materials, 2020, 30, 1910534.                              | 7.8  | 100       |
| 223 | Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive<br>Luminescent Switching. Angewandte Chemie, 2020, 132, 17733-17739.                                    | 1.6  | 17        |
| 224 | High-mobility organic single-crystalline transistors with anisotropic transport based on high<br>symmetrical "H―shaped heteroarene derivatives. Journal of Materials Chemistry C, 2020, 8, 11477-11484. | 2.7  | 5         |
| 225 | Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive<br>Luminescent Switching. Angewandte Chemie - International Edition, 2020, 59, 17580-17586.             | 7.2  | 83        |
| 226 | Templateâ€Assisted Electrochemical Deposition for Organic and Hybrid Nanowire Electronics. Advanced Optical Materials, 2020, 8, 2000866.                                                                | 3.6  | 5         |
| 227 | Synergistic Resistance Modulation toward Ultrahighly Sensitive Piezoresistive Pressure Sensors.<br>Advanced Materials Technologies, 2020, 5, 1901084.                                                   | 3.0  | 29        |
| 228 | Synthesis of large-area ultrathin graphdiyne films at an air–water interface and their application in memristors. Materials Chemistry Frontiers, 2020, 4, 1268-1273.                                    | 3.2  | 15        |
| 229 | Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized<br>Luminescence. Journal of Physical Chemistry Letters, 2020, 11, 1689-1696.                       | 2.1  | 98        |
| 230 | Toward Stable Lithium Plating/Stripping by Successive Desolvation and Exclusive Transport of Li Ions.<br>ACS Applied Materials & Interfaces, 2020, 12, 10461-10470.                                     | 4.0  | 50        |
| 231 | Solutionâ€Processed Centimeterâ€5cale Highly Aligned Organic Crystalline Arrays for Highâ€Performance<br>Organic Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e1908388.                     | 11.1 | 99        |
| 232 | A new fluorescent quinoline derivative toward the acid-responsivity in both solution and solid states. Chinese Chemical Letters, 2020, 31, 2909-2912.                                                   | 4.8  | 18        |
| 233 | Fineâ€Tuning Intrinsic Strain in Pentaâ€Twinned Pt–Cu–Mn Nanoframes Boosts Oxygen Reduction<br>Catalysis. Advanced Functional Materials, 2020, 30, 1910107.                                             | 7.8  | 108       |
| 234 | Preparing two-dimensional crystalline conjugated polymer films by synergetic polymerization and self-assembly at air/water interface. Polymer Chemistry, 2020, 11, 1572-1579.                           | 1.9  | 9         |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor.<br>Angewandte Chemie, 2020, 132, 4410-4414.                                                                                                          | 1.6  | 10        |
| 236 | Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Materials Chemistry Frontiers, 2020, 4, 715-728.                                                                                                | 3.2  | 72        |
| 237 | Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor.<br>Angewandte Chemie - International Edition, 2020, 59, 4380-4384.                                                                                   | 7.2  | 90        |
| 238 | Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction.<br>Advanced Materials, 2020, 32, e1906015.                                                                                                            | 11.1 | 56        |
| 239 | Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. ACS Applied<br>Materials & Interfaces, 2020, 12, 22552-22559.                                                                                                         | 4.0  | 13        |
| 240 | Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of<br>Molecule–Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. Journal<br>of the American Chemical Society, 2020, 142, 9708-9717. | 6.6  | 28        |
| 241 | Effect of functional groups on microporous polymer based resistance switching memory devices.<br>Chemical Communications, 2020, 56, 6356-6359.                                                                                                        | 2.2  | 12        |
| 242 | Atomically Thin Catalysts: Recent Advances in Atomicâ€Level Engineering of Nanostructured Catalysts<br>for Electrochemical CO <sub>2</sub> Reduction (Adv. Funct. Mater. 17/2020). Advanced Functional<br>Materials, 2020, 30, 2070107.               | 7.8  | 3         |
| 243 | All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. Journal of Materials Chemistry C, 2020, 8, 7436-7446.                           | 2.7  | 8         |
| 244 | A Transfer Method for Highâ€Mobility, Biasâ€Stable, and Flexible Organic Fieldâ€Effect Transistors.<br>Advanced Materials Technologies, 2020, 5, 2000169.                                                                                             | 3.0  | 14        |
| 245 | <i>SmartMat</i> : Smart materials to Smart world. SmartMat, 2020, 1, .                                                                                                                                                                                | 6.4  | 25        |
| 246 | Control of molecular packing toward a lateral microresonator for microlaser array. Journal of<br>Materials Chemistry C, 2020, 8, 8531-8537.                                                                                                           | 2.7  | 9         |
| 247 | Synthesis and Property Study of Field-effect Emissive Conjugated Polymers Based on Styrene and Benzothiadiazole. Acta Chimica Sinica, 2020, 78, 945.                                                                                                  | 0.5  | 8         |
| 248 | Materials chemistry research at Tianjin University. Materials Chemistry Frontiers, 2020, 4, 690-691.                                                                                                                                                  | 3.2  | 0         |
| 249 | The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly<br>Sensitive Pressure Sensors. Advanced Materials, 2019, 31, e1805630.                                                                                | 11.1 | 115       |
| 250 | Heterogeneous electrocatalytic degradation of ciprofloxacin by ternary Ce3ZrFe4O14-x/CF composite cathode. Catalysis Today, 2019, 327, 116-125.                                                                                                       | 2.2  | 18        |
| 251 | Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Materials Today, 2019, 24, 17-25.                                                                                          | 8.3  | 98        |
| 252 | Layerâ€Đefining Strategy to Grow Twoâ€Đimensional Molecular Crystals on a Liquid Surface down to the<br>Monolayer Limit. Angewandte Chemie - International Edition, 2019, 58, 16082-16086.                                                            | 7.2  | 53        |

| #   | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 20891-20898.                                                                                      | 5.2  | 65        |
| 254 | A novel Fe-free photo-electro-Fenton-like system for enhanced ciprofloxacin degradation:<br>bifunctional Z-scheme WO3/g-C3N4. Environmental Science: Nano, 2019, 6, 2850-2862.                                                                                     | 2.2  | 27        |
| 255 | Highâ€Efficiency Singleâ€Component Organic Lightâ€Emitting Transistors. Advanced Materials, 2019, 31,<br>e1903175.                                                                                                                                                 | 11.1 | 98        |
| 256 | A Oneâ€Dimensional π–d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity<br>in Negishi Coupling. Angewandte Chemie - International Edition, 2019, 58, 14731-14739.                                                                        | 7.2  | 144       |
| 257 | Trisulfideâ€Bond Acenes for Organic Batteries. Angewandte Chemie, 2019, 131, 13647-13655.                                                                                                                                                                          | 1.6  | 7         |
| 258 | Trisulfideâ€Bond Acenes for Organic Batteries. Angewandte Chemie - International Edition, 2019, 58,<br>13513-13521.                                                                                                                                                | 7.2  | 28        |
| 259 | Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. Advanced Materials, 2019, 31, e1902328.                                                                                                                                               | 11.1 | 245       |
| 260 | Organic Single-Crystal Spintronics: Magnetoresistance Devices with High Magnetic-Field Sensitivity.<br>ACS Nano, 2019, 13, 9491-9497.                                                                                                                              | 7.3  | 20        |
| 261 | A new type of solid-state luminescent 2-phenylbenzo[ <i>g</i> ]furo[2,3- <i>b</i> ]quinoxaline derivative:<br>synthesis, photophysical characterization and transporting properties. Journal of Materials<br>Chemistry C, 2019, 7, 9690-9697.                      | 2.7  | 18        |
| 262 | Highly Efficient Degradation of Polyacrylamide by an Fe-Doped<br>Ce <sub>0.75</sub> Zr <sub>0.25</sub> O <sub>2</sub> Solid Solution/CF Composite Cathode in a<br>Heterogeneous Electro-Fenton Process. ACS Applied Materials & Interfaces, 2019, 11, 30703-30712. | 4.0  | 24        |
| 263 | 2D Molecular Crystal Bilayer p–n Junctions: A General Route toward Highâ€Performance and<br>Wellâ€Balanced Ambipolar Organic Fieldâ€Effect Transistors. Small, 2019, 15, e1902187.                                                                                 | 5.2  | 29        |
| 264 | A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals. Advanced<br>Materials, 2019, 31, e1901437.                                                                                                                                | 11.1 | 44        |
| 265 | Transmission mechanism and quantum interference in fused thienoacenes coupling to Au electrodes through the thiophene rings. Physical Chemistry Chemical Physics, 2019, 21, 16293-16301.                                                                           | 1.3  | 3         |
| 266 | Crystal Engineering of Organic Optoelectronic Materials. CheM, 2019, 5, 2814-2853.                                                                                                                                                                                 | 5.8  | 175       |
| 267 | Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.                                                                            | 4.0  | 17        |
| 268 | Organic Lightâ€Emitting Transistors: Highâ€Efficiency Singleâ€Component Organic Lightâ€Emitting<br>Transistors (Adv. Mater. 37/2019). Advanced Materials, 2019, 31, 1970266.                                                                                       | 11.1 | 0         |
| 269 | Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the<br>Monolayer Limit. Angewandte Chemie, 2019, 131, 16228-16232.                                                                                                | 1.6  | 6         |
| 270 | Innenrücktitelbild: Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid<br>Surface down to the Monolayer Limit (Angew. Chem. 45/2019). Angewandte Chemie, 2019, 131,<br>16479-16479.                                                  | 1.6  | 0         |

| #   | Article                                                                                                                                                                                                                                                 | IF                 | CITATIONS               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| 271 | Organic Single Crystals: A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D<br>Molecular Crystals (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970251.                                                                       | 11.1               | 2                       |
| 272 | Enhanced optomechanical properties of mechanochemiluminescent poly(methyl acrylate) composites<br>with granulated fluorescent conjugated microporous polymer fillers. Chemical Science, 2019, 10,<br>2206-2211.                                         | 3.7                | 32                      |
| 273 | Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.                                                                     | 5.2                | 25                      |
| 274 | Cyclohexyl-Substituted Anthracene Derivatives for High Thermal Stability Organic Semiconductors.<br>Frontiers in Chemistry, 2019, 7, 11.                                                                                                                | 1.8                | 17                      |
| 275 | Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nature Chemistry, 2019, 11, 271-277.                                                                                       | 6.6                | 115                     |
| 276 | Monolayer organic field-effect transistors. Science China Chemistry, 2019, 62, 313-330.                                                                                                                                                                 | 4.2                | 54                      |
| 277 | Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2019, 48, 1492-1530.                                                                                                                                                   | 18.7               | 314                     |
| 278 | Evaluation of ciprofloxacin destruction between ordered mesoporous and bulk<br>NiMn <sub>2</sub> O <sub>4</sub> /CF cathode: efficient mineralization in a heterogeneous<br>electro-Fenton-like process. Environmental Science: Nano, 2019, 6, 661-671. | 2.2                | 25                      |
| 279 | Smallâ€Moleculeâ€Doped Organic Crystals with Longâ€Persistent Luminescence. Advanced Functional<br>Materials, 2019, 29, 1902503.                                                                                                                        | 7.8                | 80                      |
| 280 | Airflow Sensors: Extremely Sensitive, Allochroic Airflow Sensors by Synergistic Effect of Reversible<br>Water Molecules Adsorption and Tunable Interlayer Distance in Graphene Oxide Film (Adv. Mater.) Tj ETQq0 0 0                                    | rg <b>B1</b> 9/Ove | rlo <b>o</b> k 10 Tf 50 |
| 281 | Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible<br>Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. Macromolecules, 2019, 52, 4222-4231.                                                                  | 2.2                | 34                      |
| 282 | Conjugated polymer crystals via topochemical polymerization. Science China Chemistry, 2019, 62, 1271-1274.                                                                                                                                              | 4.2                | 14                      |
| 283 | Thermal-assisted self-assembly: a self-adaptive strategy towards large-area uniaxial organic single-crystalline microribbon arrays. Nanoscale, 2019, 11, 12781-12787.                                                                                   | 2.8                | 15                      |
| 284 | Carbogenic Nanozyme with Ultrahigh Reactive Nitrogen Species Selectivity for Traumatic Brain Injury.<br>Nano Letters, 2019, 19, 4527-4534.                                                                                                              | 4.5                | 126                     |
| 285 | Diphenyleneâ€Tetracyanoquinodimethane Cocrystals as Stable Organic Rectifiers. ChemPlusChem, 2019,<br>84, 1245-1248.                                                                                                                                    | 1.3                | 5                       |
| 286 | Two-Pathway Viewpoint to Interpret Quantum Interference in Molecules Containing Five-Membered<br>Heterocycles: Thienoacenes as Examples. Journal of Physical Chemistry C, 2019, 123, 15977-15984.                                                       | 1.5                | 4                       |
| 287 | A Robust Nonvolatile Resistive Memory Device Based on a Freestanding Ultrathin 2D Imine Polymer<br>Film. Advanced Materials, 2019, 31, e1902264.                                                                                                        | 11.1               | 117                     |
| 288 | Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet<br>Energy Gap via Charge Transfer. Angewandte Chemie - International Edition, 2019, 58, 11311-11316.                                                    | 7.2                | 76                      |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet–Triplet<br>Energy Gap via Charge Transfer. Angewandte Chemie, 2019, 131, 11433.                                                                  | 1.6  | 13        |
| 290 | Phenanthrene derivatives combined charge transport properties and strong solid-state emission.<br>Science China Chemistry, 2019, 62, 916-920.                                                                                            | 4.2  | 5         |
| 291 | Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy, 2019, 61, 352-360.                                                                                                 | 8.2  | 89        |
| 292 | Scalable Fabrication of Highly Crystalline Organic Semiconductor Thin Film by Channelâ€Restricted<br>Screen Printing toward the Lowâ€Cost Fabrication of Highâ€Performance Transistor Arrays. Advanced<br>Materials, 2019, 31, e1807975. | 11.1 | 93        |
| 293 | High-performance optical memory transistors based on a novel organic semiconductor with nanosprouts. Nanoscale, 2019, 11, 7117-7122.                                                                                                     | 2.8  | 16        |
| 294 | Extremely Sensitive, Allochroic Airflow Sensors by Synergistic Effect of Reversible Water Molecules<br>Adsorption and Tunable Interlayer Distance in Graphene Oxide Film. Advanced Materials Interfaces,<br>2019, 6, 1900365.            | 1.9  | 4         |
| 295 | The odd–even effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding <i>in vivo</i> imaging. Materials Chemistry Frontiers, 2019, 3, 1391-1397.                                               | 3.2  | 81        |
| 296 | A case study of tuning the crystal polymorphs of organic semiconductors towards simultaneously<br>improved light emission and field-effect properties. Journal of Materials Chemistry C, 2019, 7,<br>5925-5930.                          | 2.7  | 22        |
| 297 | Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits.<br>Advanced Materials, 2019, 31, e1806070.                                                                                                | 11.1 | 176       |
| 298 | Construction of Largeâ€Area Ultrathin Conductive Metal–Organic Framework Films through<br>Vaporâ€Induced Conversion. Small, 2019, 15, e1804845.                                                                                          | 5.2  | 42        |
| 299 | Vertical Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1808453.                                                                                                                                            | 7.8  | 64        |
| 300 | Realizing low-voltage operating crystalline monolayer organic field-effect transistors with a low contact resistance. Journal of Materials Chemistry C, 2019, 7, 3436-3442.                                                              | 2.7  | 30        |
| 301 | Eu-based coordination polymer microrods for low-loss optical waveguiding application. Nanoscale, 2019, 11, 21061-21067.                                                                                                                  | 2.8  | 5         |
| 302 | Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Physical Chemistry Chemical Physics, 2019, 21, 26058-26065.                                                                   | 1.3  | 7         |
| 303 | Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton<br>cathode: Influence factors, reaction mechanism and pathways. Journal of Hazardous Materials, 2019,<br>367, 365-374.                       | 6.5  | 69        |
| 304 | Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nature Communications, 2019, 10, 12.                                                                             | 5.8  | 172       |
| 305 | Negative transconductance in multi-layer organic thin-film transistors. Nanotechnology, 2019, 30,<br>02LT01.                                                                                                                             | 1.3  | 9         |
| 306 | Fast Deposition of Aligning Edgeâ€On Polymers for Highâ€Mobility Ambipolar Transistors. Advanced<br>Materials, 2019, 31, e1805761.                                                                                                       | 11.1 | 70        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Organic single-crystal phototransistor with unique wavelength-detection characteristics. Science<br>China Materials, 2019, 62, 729-735.                                                                                                            | 3.5  | 18        |
| 308 | Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. Science China Materials, 2019, 62, 813-822.                                                             | 3.5  | 6         |
| 309 | Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed<br>Organic Complementary Logic via a Twoâ€Step CH Activation Strategy. Advanced Materials, 2019, 31,<br>e1806010.                                    | 11.1 | 63        |
| 310 | A new asymmetric anthracene derivative with high mobility. Science China Chemistry, 2019, 62, 251-255.                                                                                                                                             | 4.2  | 12        |
| 311 | Anisotropic Magnetoresistance in NiFe-Based Polymer Spin Valves. ACS Applied Materials &<br>Interfaces, 2019, 11, 11654-11659.                                                                                                                     | 4.0  | 11        |
| 312 | Tuning photophysical properties via alkoxyl groups in charge-separated triphenylamine sensitizers for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 233-241.                                     | 2.0  | 12        |
| 313 | Tuning Rectification Properties of Molecular Electronic Devices by Mixed Monolayer. Acta Chimica Sinica, 2019, 77, 1031.                                                                                                                           | 0.5  | 10        |
| 314 | Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites. Advanced Functional<br>Materials, 2018, 28, 1707006.                                                                                                                     | 7.8  | 129       |
| 315 | Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of<br>Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte<br>Chemie - International Edition, 2018, 57, 5708-5713. | 7.2  | 137       |
| 316 | Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope. ACS<br>Applied Materials & Interfaces, 2018, 10, 25871-25877.                                                                                            | 4.0  | 50        |
| 317 | Nâ€Type 2D Organic Single Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors and<br>Nearâ€Infrared Phototransistors. Advanced Materials, 2018, 30, e1706260.                                                                         | 11.1 | 145       |
| 318 | Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials.<br>Journal of the American Chemical Society, 2018, 140, 5339-5342.                                                                               | 6.6  | 132       |
| 319 | Structure engineering: extending the length of azaacene derivatives through quinone bridges.<br>Journal of Materials Chemistry C, 2018, 6, 3628-3633.                                                                                              | 2.7  | 10        |
| 320 | Organic Single Crystals: N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect<br>Transistors and Near-Infrared Phototransistors (Adv. Mater. 16/2018). Advanced Materials, 2018, 30,<br>1870114.                            | 11.1 | 5         |
| 321 | Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of<br>Metal–Organic Frameworks, Metal Nanoparticles, and Micro―and Mesoporous Polymers. Angewandte<br>Chemie, 2018, 130, 5810-5815.                        | 1.6  | 38        |
| 322 | Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging.<br>Angewandte Chemie, 2018, 130, 4027-4031.                                                                                                          | 1.6  | 50        |
| 323 | From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single rystal<br>Indolocarbazoles Through Delicate Synergetic CH/NHâ‹â‹î€ Interactions. Angewandte Chemie -<br>International Edition, 2018, 57, 8875-8880.                   | 7.2  | 44        |
| 324 | Controllable growth of C <sub>8</sub> -BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method. Journal of Materials Chemistry C, 2018, 6, 2419-2423.                                         | 2.7  | 37        |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite. Advanced<br>Energy Materials, 2018, 8, 1703178.                                                                                              | 10.2 | 98        |
| 326 | Solutionâ€Processable Balanced Ambipolar Fieldâ€Effect Transistors Based on Carbonylâ€Regulated<br>Copolymers. Chemistry - an Asian Journal, 2018, 13, 846-852.                                                                         | 1.7  | 2         |
| 327 | Quinolineâ€Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6<br>cm <sup>2</sup> V <sup>â^'1</sup> s <sup>â^'1</sup> in Flexible Thin Film Devices. Advanced Materials,<br>2018, 30, 1704843.            | 11.1 | 97        |
| 328 | Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging.<br>Angewandte Chemie - International Edition, 2018, 57, 3963-3967.                                                                        | 7.2  | 255       |
| 329 | Microwaveâ€Assisted Regeneration of Singleâ€Walled Carbon Nanotubes from Carbon Fragments. Small, 2018, 14, e1800033.                                                                                                                   | 5.2  | 21        |
| 330 | Surface onfined Dynamic Covalent System Driven by Olefin Metathesis. Angewandte Chemie -<br>International Edition, 2018, 57, 1869-1873.                                                                                                 | 7.2  | 27        |
| 331 | Organic Optoelectronics: 2D Organic Materials for Optoelectronic Applications (Adv. Mater. 2/2018).<br>Advanced Materials, 2018, 30, 1870012.                                                                                           | 11.1 | 11        |
| 332 | Hollow Spherical Nanoshell Arrays of 2D Layered Semiconductor for Highâ€Performance<br>Photodetector Device. Advanced Functional Materials, 2018, 28, 1705153.                                                                          | 7.8  | 50        |
| 333 | Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant. Journal of Materials Chemistry C, 2018, 6, 6378-6384.                                                   | 2.7  | 105       |
| 334 | From Linear to Angular Isomers: Achieving Tunable Charge Transport in Singleâ€Crystal<br>Indolocarbazoles Through Delicate Synergetic CH/NHâ‹â‹î€ Interactions. Angewandte Chemie, 2018, 130,<br>9013-9018.                             | 1.6  | 11        |
| 335 | High performance organic transistors and phototransistors based on<br>diketopyrrolopyrrole-quaterthiophene copolymer thin films fabricated via low-concentration<br>solution processing. Chinese Chemical Letters, 2018, 29, 1675-1680. | 4.8  | 25        |
| 336 | A new organic compound of 2-(2,2-diphenylethenyl)anthracene (DPEA) showing simultaneous<br>electrical charge transport property and AIE optical characteristics. Journal of Materials Chemistry<br>C, 2018, 6, 3856-3860.               | 2.7  | 27        |
| 337 | Solvatomechanical Bending of Organic Charge Transfer Cocrystal. Journal of the American Chemical Society, 2018, 140, 6186-6189.                                                                                                         | 6.6  | 100       |
| 338 | Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high<br>performance and low voltage organic transistor and inverter. Science China Materials, 2018, 61,<br>1237-1242.                            | 3.5  | 9         |
| 339 | 2D Organic Materials for Optoelectronic Applications. Advanced Materials, 2018, 30, 1702415.                                                                                                                                            | 11.1 | 266       |
| 340 | Organic semiconductor crystals. Chemical Society Reviews, 2018, 47, 422-500.                                                                                                                                                            | 18.7 | 623       |
| 341 | Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated<br>with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28,<br>1705541.                       | 7.8  | 69        |
| 342 | Tuning of the degree of charge transfer and the electronic properties in organic binary compounds by crystal engineering: a perspective. Journal of Materials Chemistry C, 2018, 6, 1884-1902.                                          | 2.7  | 149       |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Acid-Responsive Conductive Nanofiber of Tetrabenzoporphyrin Made by Solution Processing. Journal of the American Chemical Society, 2018, 140, 62-65.                                                               | 6.6  | 24        |
| 344 | Organic single-crystalline transistors based on Benzo[b]thiophen-Benzo[b]furan analogues with contorted configuration. Organic Electronics, 2018, 53, 57-65.                                                       | 1.4  | 10        |
| 345 | Selective sorting of metallic/semiconducting single-walled carbon nanotube arrays by<br>â€ïgniter-assisted gas-phase etching'. Materials Chemistry Frontiers, 2018, 2, 157-162.                                    | 3.2  | 6         |
| 346 | n-Type conjugated polymers based on 3,3′-dicyano-2,2′-bithiophene: synthesis and semiconducting<br>properties. Journal of Materials Chemistry C, 2018, 6, 12896-12903.                                             | 2.7  | 21        |
| 347 | Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer. Journal of Materials Chemistry C, 2018, 6, 12479-12483.                         | 2.7  | 15        |
| 348 | Smartly designed AIE triazoliums as unique targeting fluorescence tags for sulfonic<br>biomacromolecule recognition <i>via</i> †electrostatic locking'. Journal of Materials Chemistry C,<br>2018, 6, 12529-12536. | 2.7  | 10        |
| 349 | Deposition rate related DPA OFET threshold voltage shift and hysteresis variation. Journal of<br>Materials Chemistry C, 2018, 6, 12498-12502.                                                                      | 2.7  | 6         |
| 350 | Reliable Spin Valves of Conjugated Polymer Based on Mechanically Transferrable Top Electrodes. ACS<br>Nano, 2018, 12, 12657-12664.                                                                                 | 7.3  | 34        |
| 351 | Organic field-effect optical waveguides. Nature Communications, 2018, 9, 4790.                                                                                                                                     | 5.8  | 85        |
| 352 | Neuromorphic Devices: A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible,<br>Artificial Visual-Perception System (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870349.            | 11.1 | 6         |
| 353 | New anthracene derivatives integrating high mobility and strong emission. Journal of Materials<br>Chemistry C, 2018, 6, 13257-13260.                                                                               | 2.7  | 9         |
| 354 | Constructing Universal Ionic Sieves via Alignment of Twoâ€Đimensional Covalent Organic Frameworks<br>(COFs). Angewandte Chemie - International Edition, 2018, 57, 16072-16076.                                     | 7.2  | 115       |
| 355 | A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial<br>Visualâ€Perception System. Advanced Materials, 2018, 30, e1803961.                                                      | 11.1 | 292       |
| 356 | Electrochemical polymerization for two-dimensional conjugated polymers. Journal of Materials<br>Chemistry C, 2018, 6, 10672-10686.                                                                                 | 2.7  | 39        |
| 357 | Donor–Acceptor Conjugated Polymers Based on Bisisoindigo: Energy Level Modulation toward<br>Unipolar n-Type Semiconductors. Macromolecules, 2018, 51, 8652-8661.                                                   | 2.2  | 36        |
| 358 | Organic‣ingleâ€Crystal Vertical Fieldâ€Effect Transistors and Phototransistors. Advanced Materials,<br>2018, 30, e1803655.                                                                                         | 11.1 | 59        |
| 359 | 2,7â€Dioctylbenzofuro[3,2â€ <i>b</i> ]benzofuran: An Organic Semiconductor with Twoâ€dimensional<br>Transport Channels. Asian Journal of Organic Chemistry, 2018, 7, 2228-2232.                                    | 1.3  | 18        |
| 360 | Fullerene-derivative as interlayer for high performance organic thin-film transistors. Journal of<br>Materials Chemistry C, 2018, 6, 6052-6057.                                                                    | 2.7  | 7         |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Hole Mobility Modulation in Singleâ€Crystal Metal Phthalocyanines by Changing the Metal‑'Ï€/π‑'Ï€<br>Interactions. Angewandte Chemie, 2018, 130, 10269-10274.                                                               | 1.6  | 10        |
| 362 | Substrate Effects in the Supramolecular Self-Assembly of 2,4,6-Tris(4-bromophenyl)-1,3,5-triazine on Graphite and Graphene. Journal of Physical Chemistry C, 2018, 122, 12307-12314.                                        | 1.5  | 12        |
| 363 | Presence of Short Intermolecular Contacts Screens for Kinetic Stability in Packing Polymorphs.<br>Journal of the American Chemical Society, 2018, 140, 7519-7525.                                                           | 6.6  | 29        |
| 364 | Separation of Arylenevinylene Macrocycles with a Surfaceâ€Confined Twoâ€Dimensional Covalent<br>Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8984-8988.                                          | 7.2  | 46        |
| 365 | Separation of Arylenevinylene Macrocycles with a Surfaceâ€Confined Twoâ€Dimensional Covalent<br>Organic Framework. Angewandte Chemie, 2018, 130, 9122-9126.                                                                 | 1.6  | 6         |
| 366 | Freeâ€Standing 2D Hexagonal Aluminum Nitride Dielectric Crystals for Highâ€Performance Organic<br>Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1801891.                                                        | 11.1 | 32        |
| 367 | Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and Highâ€Gain<br>Inverters. Advanced Materials, 2018, 30, e1801951.                                                                        | 11.1 | 32        |
| 368 | Organic Semiconductor Single Crystals for Electronics and Photonics. Advanced Materials, 2018, 30, e1801048.                                                                                                                | 11.1 | 319       |
| 369 | Integrating Efficient Optical Gain in Highâ€Mobility Organic Semiconductors for Multifunctional<br>Optoelectronic Applications. Advanced Functional Materials, 2018, 28, 1802454.                                           | 7.8  | 50        |
| 370 | Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nature Communications, 2018, 9, 2933.                                                                | 5.8  | 118       |
| 371 | Charge-separated sensitizers with enhanced intramolecular charge transfer for dye-sensitized solar cells: Insight from structure-performance relationship. Organic Electronics, 2018, 61, 35-45.                            | 1.4  | 21        |
| 372 | Organic Fieldâ€Effect Transistor for Energyâ€Related Applications: Lowâ€Powerâ€Consumption Devices,<br>Nearâ€Infrared Phototransistors, and Organic Thermoelectric Devices. Advanced Energy Materials, 2018,<br>8, 1801003. | 10.2 | 95        |
| 373 | Enhanced Visible-Light-Driven Hydrogen Production of Carbon Nitride by Band Structure Tuning.<br>Journal of Physical Chemistry C, 2018, 122, 17261-17267.                                                                   | 1.5  | 23        |
| 374 | How Does Palladium–Amino Acid Cooperative Catalysis Enable Regio- and Stereoselective<br>C(sp <sup>3</sup> )–H Functionalization in Aldehydes and Ketones? A DFT Mechanistic Study. ACS<br>Catalysis, 2018, 8, 7698-7709.   | 5.5  | 38        |
| 375 | Cyclodextrin functionalized reduced graphene oxide for electrochemical chiral differentiation of tartaric acid. Analytical Methods, 2018, 10, 3660-3665.                                                                    | 1.3  | 11        |
| 376 | Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustainable Energy and Fuels, 2018, 2, 2237-2243.                                                      | 2.5  | 18        |
| 377 | Click Access to a Cyclodextrin-Based Spatially Confined AIE Material for Hydrogenase Recognition.<br>Sensors, 2018, 18, 1134.                                                                                               | 2.1  | 3         |
|     | InnenrÅ1/setitelbild: From Linear to Angular Jeomere: Achieving Tunable Charge Transport in                                                                                                                                 |      |           |

Innenrücktitelbild: From Linear to Angular Isomers: Achieving Tunable Charge Transport in Singleâ€Crystal Indolocarbazoles Through Delicate Synergetic CH/NHâ‹...â‹...î€ Interactions (Angew. Chem.) Tj **E.E**Qq0 0 00rgBT /Over

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Hole Mobility Modulation in Singleâ€Crystal Metal Phthalocyanines by Changing the Metal–π/π–π<br>Interactions. Angewandte Chemie - International Edition, 2018, 57, 10112-10117.                                                     | 7.2  | 54        |
| 380 | Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Physical Chemistry<br>Chemical Physics, 2018, 20, 6009-6023.                                                                                         | 1.3  | 143       |
| 381 | Organic Field-Effect Transistors: Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar<br>Transistors and High-Gain Inverters (Adv. Mater. 32/2018). Advanced Materials, 2018, 30, 1870241.                           | 11.1 | 0         |
| 382 | Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic<br>Luminogens: The Intrinsic Principle and Recent Progress. Small, 2018, 14, e1801560.                                                   | 5.2  | 204       |
| 383 | Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nature Communications, 2018, 9, 2339.                                                              | 5.8  | 76        |
| 384 | Two-Dimensional High-Quality Monolayered Triangular WS <sub>2</sub> Flakes for Field-Effect<br>Transistors. ACS Applied Materials & Interfaces, 2018, 10, 22435-22444.                                                               | 4.0  | 77        |
| 385 | An Asymmetric Furan/Thieno[3,2â€ <i>b</i> ]Thiophene Diketopyrrolopyrrole Building Block for<br>Annealingâ€Free Green‣olvent Processable Organic Thinâ€Film Transistors. Macromolecular Rapid<br>Communications, 2018, 39, e1800225. | 2.0  | 28        |
| 386 | A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C, 2017, 5, 1308-1312.                                                           | 2.7  | 27        |
| 387 | Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for<br>High Crystallinity toward Efficient Charge Transport. Journal of the American Chemical Society, 2017,<br>139, 2734-2740.          | 6.6  | 79        |
| 388 | Controlled formation of large-area single-crystalline TIPS-pentacene arrays through superhydrophobic micropillar flow-coating. Journal of Materials Chemistry C, 2017, 5, 2702-2707.                                                 | 2.7  | 25        |
| 389 | Enhancing field-effect mobility and maintaining solid-state emission by incorporating 2,6-diphenyl substitution to 9,10-bis(phenylethynyl)anthracene. Journal of Materials Chemistry C, 2017, 5, 2519-2523.                          | 2.7  | 24        |
| 390 | Fieldâ€Effect Devices: Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to<br>nâ€ŧype by Adjusting Their Substitutional Symmetry (Adv. Mater. 10/2017). Advanced Materials, 2017, 29, .                      | 11.1 | 1         |
| 391 | Fewâ€Layer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials,<br>2017, 29, 1606755.                                                                                                         | 11.1 | 198       |
| 392 | Electrocatalysts: Ternary NiCo <sub>2</sub> P <i><sub>x</sub></i> Nanowires as pHâ€Universal<br>Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction (Adv. Mater. 9/2017). Advanced<br>Materials, 2017, 29, .           | 11.1 | 8         |
| 393 | Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived<br>Charge-Separated State of Sensitizers. ACS Applied Materials & Interfaces, 2017, 9, 9880-9891.                                           | 4.0  | 27        |
| 394 | Shape-Controlled Metal-Free Catalysts: Facet-Sensitive Catalytic Activity Induced by the Arrangement<br>Pattern of Noncovalent Supramolecular Chains. ACS Nano, 2017, 11, 4866-4876.                                                 | 7.3  | 31        |
| 395 | Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in<br>Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie - International Edition, 2017, 56,<br>7831-7835.                                 | 7.2  | 146       |
| 396 | Inverse Magnetoresistance in Polymer Spin Valves. ACS Applied Materials & Interfaces, 2017, 9,<br>15644-15651.                                                                                                                       | 4.0  | 35        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | The Origins of the Differences between Alkyne Hydroalkoxylations Catalyzed by 8â€Quinolinolato―and<br>Dipyrrinatoâ€Ligated Rh <sup>I</sup> Complexes: A DFT Mechanistic Study. European Journal of Inorganic<br>Chemistry, 2017, 2017, 2713-2722. | 1.0  | 7         |
| 398 | Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based<br>Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 22732-22738.                                                                       | 4.0  | 36        |
| 399 | Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic<br>Lightâ€Harvesting Systems. Angewandte Chemie, 2017, 129, 10488-10492.                                                                                    | 1.6  | 104       |
| 400 | Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic<br>Lightâ€Harvesting Systems. Angewandte Chemie - International Edition, 2017, 56, 10352-10356.                                                             | 7.2  | 152       |
| 401 | Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in<br>Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie, 2017, 129, 7939-7943.                                                                        | 1.6  | 32        |
| 402 | A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€toâ€Memory Operations.<br>Advanced Materials, 2017, 29, 1701772.                                                                                              | 11.1 | 95        |
| 403 | Growth and carrier-transport performance of a poly(3-hexylthiophene)/1,2,3,4-bis(p-methylbenzylidene)<br>sorbitol hybrid shish-kebab nanostructure. Journal of Materials Chemistry C, 2017, 5, 3983-3992.                                         | 2.7  | 12        |
| 404 | Comparable charge transport property based on S···S interactions with that of π-π stacking in a<br>bis-fused tetrathiafulvalene compound. Science China Chemistry, 2017, 60, 510-515.                                                             | 4.2  | 9         |
| 405 | Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices. Nano Research, 2017, 10, 1249-1257.                                                                                          | 5.8  | 16        |
| 406 | Ternary NiCo <sub>2</sub> P <i><sub>x</sub></i> Nanowires as pHâ€Universal Electrocatalysts for<br>Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.                                                           | 11.1 | 544       |
| 407 | Construction of Two-Dimensional Chiral Networks through Atomic Bromine on Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 326-331.                                                                                                      | 2.1  | 33        |
| 408 | Tuning crystal polymorphs of a π-extended tetrathiafulvalene-based cruciform molecule towards<br>high-performance organic field-effect transistors. Science China Materials, 2017, 60, 75-82.                                                     | 3.5  | 14        |
| 409 | Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their<br>Substitutional Symmetry. Advanced Materials, 2017, 29, 1605053.                                                                         | 11.1 | 64        |
| 410 | Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.                                          | 2.7  | 51        |
| 411 | Photolysis of polymeric self-assembly controlled by donor–acceptor interaction. Chemical Communications, 2017, 53, 11822-11825.                                                                                                                   | 2.2  | 19        |
| 412 | A bowl-shaped sumanene derivative with dense convex–concave columnar packing for<br>high-performance organic field-effect transistors. Chemical Communications, 2017, 53, 11407-11409.                                                            | 2.2  | 31        |
| 413 | Photosensors: A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free<br>Nearâ€Infraredâ€toâ€Memory Operations (Adv. Mater. 32/2017). Advanced Materials, 2017, 29, .                                                                 | 11.1 | 8         |
| 414 | Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. Journal of the<br>American Chemical Society, 2017, 139, 14976-14982.                                                                                             | 6.6  | 286       |

| #   | Article                                                                                                                                                                                                                                                                                              | IF              | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 415 | Assembly of Ï€â€Conjugated Nanosystems for Electronic Sensing Devices. Advanced Electronic Materials, 2017, 3, 1700209.                                                                                                                                                                              | 2.6             | 11           |
| 416 | Random Access Memory: Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a<br>Common Dielectric Layer Overcoming the Halfâ€5election Problem (Adv. Mater. 34/2017). Advanced<br>Materials, 2017, 29, .                                                                            | 11.1            | 5            |
| 417 | Rechargeable Batteries: Formation of Septupleâ€Shelled<br>(Co <sub>2/3</sub> Mn <sub>1/3</sub> )(Co <sub>5/6</sub> Mn <sub>1/6</sub> ) <sub>2</sub> O <sub>4</sub><br>Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery (Adv. Mater. 34/2017).<br>Advanced Materials. 2017. 29. | 11.1            | 12           |
| 418 | Titelbild: Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic<br>Lightâ€Harvesting Systems (Angew. Chem. 35/2017). Angewandte Chemie, 2017, 129, 10383-10383.                                                                                                     | 1.6             | 0            |
| 419 | Formation of Septupleâ€Shelled<br>(Co <sub>2/3</sub> Mn <sub>1/3</sub> )(Co <sub>5/6</sub> Mn <sub>1/6</sub> ) <sub>2</sub> O <sub>4</sub><br>Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery. Advanced Materials, 2017, 29,<br>1700550.                                      | 11.1            | 122          |
| 420 | Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer<br>Overcoming the Half‣election Problem. Advanced Materials, 2017, 29, 1701907.                                                                                                                      | 11.1            | 46           |
| 421 | Capillaryâ€Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors.<br>Advanced Functional Materials, 2017, 27, 1701347.                                                                                                                                                 | 7.8             | 53           |
| 422 | Enhanced stability of a rubrene analogue with a brickwork packing motif. Journal of Materials<br>Chemistry C, 2017, 5, 8376-8379.                                                                                                                                                                    | 2.7             | 4            |
| 423 | Approaching Intra―and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical<br>Polymerized Single Crystals. Advanced Materials, 2017, 29, 1701251.                                                                                                                             | 11.1            | 107          |
| 424 | Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. Polymer Chemistry, 2017, 8, 5603-5610.                                                                                                                             | 1.9             | 33           |
| 425 | Sensors: Assembly of ï€â€€onjugated Nanosystems for Electronic Sensing Devices (Adv. Electron. Mater.) Tj ETQ                                                                                                                                                                                        | q1_10.78<br>2.6 | 43]4 rgBT  ( |
| 426 | Aromatic Extension at 2,6-Positions of Anthracene toward an Elegant Strategy for Organic<br>Semiconductors with Efficient Charge Transport and Strong Solid State Emission. Journal of the<br>American Chemical Society, 2017, 139, 17261-17264.                                                     | 6.6             | 158          |
| 427 | Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Materials Chemistry Frontiers, 2017, 1, 2423-2456.                                                                                                                           | 3.2             | 106          |
| 428 | Halogen bonded cocrystal polymorphs of 1,4-di(4′-pyridyl)-1,3-diacetylene. CrystEngComm, 2017, 19,<br>4505-4509.                                                                                                                                                                                     | 1.3             | 15           |
| 429 | Tuning the donors to control the lifetimes of charge-separated states in triazine-based donor-acceptor systems. Dyes and Pigments, 2017, 136, 404-415.                                                                                                                                               | 2.0             | 19           |
| 430 | Dually Ordered Porous TiO <sub>2</sub> â€rGO Composites with Controllable Light Absorption<br>Properties for Efficient Solar Energy Conversion. Advanced Materials, 2017, 29, 1604795.                                                                                                               | 11.1            | 66           |
| 431 | Solution-Processed Flexible Organic Ferroelectric Phototransistor. ACS Applied Materials &<br>Interfaces, 2017, 9, 43880-43885.                                                                                                                                                                      | 4.0             | 25           |
| 432 | Novel Air Stable Organic Radical Semiconductor of Dimers of Dithienothiophene, Single Crystals, and<br>Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 7466-7471.                                                                                                                           | 11.1            | 39           |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | A General Method for Growing Twoâ€Dimensional Crystals of Organic Semiconductors by "Solution<br>Epitaxy― Angewandte Chemie, 2016, 128, 9671-9675.                                                                                  | 1.6  | 28        |
| 434 | Threeâ€Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics. Advanced<br>Materials, 2016, 28, 624-630.                                                                                                   | 11.1 | 48        |
| 435 | Deepening Insights of Charge Transfer and Photophysics in a Novel Donor–Acceptor Cocrystal for<br>Waveguide Couplers and Photonic Logic Computation. Advanced Materials, 2016, 28, 5954-5962.                                       | 11.1 | 105       |
| 436 | Organic Memory Devices: 2D Mica Crystal as Electret in Organic Fieldâ€Effect Transistors for<br>Multistate Memory (Adv. Mater. 19/2016). Advanced Materials, 2016, 28, 3792-3792.                                                   | 11.1 | 2         |
| 437 | Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar<br>Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.                                        | 11.1 | 155       |
| 438 | Perovskite Photodetectors based on CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Single Crystals.<br>Chemistry - an Asian Journal, 2016, 11, 2675-2679.                                                                          | 1.7  | 30        |
| 439 | Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar<br>Singleâ€Crystalline Electrochemical Metallization Memories. Advanced Materials, 2016, 28, 7094-7100.                                      | 11.1 | 17        |
| 440 | A General Method for Growing Twoâ€Dimensional Crystals of Organic Semiconductors by "Solution<br>Epitaxy― Angewandte Chemie - International Edition, 2016, 55, 9519-9523.                                                           | 7.2  | 153       |
| 441 | Organic Lightâ€Emitting Transistors: Materials, Device Configurations, and Operations. Small, 2016, 12, 1252-1294.                                                                                                                  | 5.2  | 171       |
| 442 | Titelbild: A General Method for Growing Twoâ€Dimensional Crystals of Organic Semiconductors by<br>"Solution Epitaxy―(Angew. Chem. 33/2016). Angewandte Chemie, 2016, 128, 9593-9593.                                                | 1.6  | 0         |
| 443 | Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices.<br>Advanced Materials, 2016, 28, 4513-4523.                                                                                          | 11.1 | 185       |
| 444 | Electron Mobility Exceeding 10 cm <sup>2</sup> V <sup>â^'1</sup> s <sup>â^'1</sup> and Bandâ€Like Charge<br>Transport in Solutionâ€Processed nâ€Channel Organic Thinâ€Film Transistors. Advanced Materials, 2016, 28,<br>5276-5283. | 11.1 | 173       |
| 445 | The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case<br>Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie, 2016, 128, 5292-5295.                                      | 1.6  | 7         |
| 446 | Organic Lightâ€Emitting Transistors: Organic Lightâ€Emitting Transistors: Materials, Device<br>Configurations, and Operations (Small 10/2016). Small, 2016, 12, 1392-1392.                                                          | 5.2  | 5         |
| 447 | Effect of Triplet State on the Lifetime of Charge Separation in Ambipolar D-A1-A2 Organic<br>Semiconductors. Journal of Physical Chemistry C, 2016, 120, 11338-11349.                                                               | 1.5  | 28        |
| 448 | Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Physical Chemistry Chemical Physics, 2016, 18, 14094-14103.                                                     | 1.3  | 81        |
| 449 | Ultrathin annealing-free polymer layers: new opportunity to enhance mobility and stability of low-voltage thin-film organic transistors. RSC Advances, 2016, 6, 51264-51269.                                                        | 1.7  | 1         |
| 450 | Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance<br>Field-Effect Transistors. Macromolecules, 2016, 49, 6431-6438.                                                                        | 2.2  | 71        |

| #   | Article                                                                                                                                                                                                            | IF                 | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 451 | Recent advances in one-dimensional organic p–n heterojunctions for optoelectronic device<br>applications. Journal of Materials Chemistry C, 2016, 4, 9388-9398.                                                    | 2.7                | 41           |
| 452 | 2D Materials: Largeâ€Size 2D βâ€Cu <sub>2</sub> S Nanosheets with Giant Phase Transition Temperature<br>Lowering (120 K) Synthesized by a Novel Method of Superâ€Cooling Chemicalâ€Vaporâ€Deposition (Adv.) Tj ETO | Չգ <b>Ը Ը Օ</b> ոք | şBЪ/Overlock |
| 453 | Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic<br>Materials by Cocrystallization, Angewandte Chemie, 2016, 128, 14229-14233                                         | 1.6                | 29           |

|     | Materials by Cocrystallization. Aligewandte Chenne, 2010, 120, 14229-14255.                                                                                                                                                         |      |       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| 454 | Vertical 2D MoO <sub>2</sub> /MoSe <sub>2</sub> Core–Shell Nanosheet Arrays as Highâ€Performance<br>Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 8537-8544.                           | 7.8  | 167   |
| 455 | Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539,<br>76-80.                                                                                                                        | 13.7 | 1,201 |
| 456 | Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic<br>Materials by Cocrystallization. Angewandte Chemie - International Edition, 2016, 55, 14023-14027.                                  | 7.2  | 103   |
| 457 | Topâ€Pinning Controlled Dewetting for Fabrication of Largeâ€Scaled Polymer Microwires and<br>Applications in OFETs. Advanced Electronic Materials, 2016, 2, 1600111.                                                                | 2.6  | 12    |
| 458 | Organic cocrystals: the development of ferroelectric properties. Science China Materials, 2016, 59, 523-530.                                                                                                                        | 3.5  | 35    |
| 459 | Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.                                                                               | 2.2  | 76    |
| 460 | β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous<br>solution: experimental and theoretical calculation study. Journal of Materials Chemistry A, 2016, 4,<br>14170-14179.                 | 5.2  | 191   |
| 461 | Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes. Solid-State Electronics, 2016, 123, 51-57.                                                                                  | 0.8  | 6     |
| 462 | Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current<br>Chemistry, 2016, 374, 83.                                                                                                             | 3.0  | 52    |
| 463 | Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. Advanced<br>Materials, 2016, 28, 8227-8233.                                                                                                     | 11.1 | 20    |
| 464 | Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical<br>Microcavities. Nano Letters, 2016, 16, 4754-4762.                                                                                  | 4.5  | 24    |
| 465 | Largeâ€Size 2D βâ€Cu <sub>2</sub> S Nanosheets with Giant Phase Transition Temperature Lowering (120 K)<br>Synthesized by a Novel Method of Superâ€Cooling Chemicalâ€Vaporâ€Deposition. Advanced Materials, 2016,<br>28, 8271-8276. | 11.1 | 57    |
| 466 | Co-crystal engineering: a novel method to obtain one-dimensional (1D) carbon nanocrystals of corannulene–fullerene by a solution process. Nanoscale, 2016, 8, 14920-14924.                                                          | 2.8  | 55    |
| 467 | Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts. Journal of Nanoparticle Research, 2016, 18, 1.                                                                       | 0.8  | 4     |
| 468 | Multilevel Investigation of Charge Transport in Conjugated Polymers. Accounts of Chemical Research, 2016, 49, 2435-2443.                                                                                                            | 7.6  | 81    |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 469 | Enhancing Photoinduced Charge Separation through Donor Moiety in Donor–Acceptor Organic<br>Semiconductors. Journal of Physical Chemistry C, 2016, 120, 25263-25275.                                                                       | 1.5  | 24        |
| 470 | Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering.<br>Science Advances, 2016, 2, e1501491.                                                                                                | 4.7  | 122       |
| 471 | Tuning the aggregation structure and electrical property of 2.6-diphenyl-anthracene by the density of octadecyltrichlorosilane. Science China Chemistry, 2016, 59, 1645-1650.                                                             | 4.2  | 5         |
| 472 | High Hole Mobility in Longâ€Range Ordered 2D Lead Sulfide Nanocrystal Monolayer Films. Advanced<br>Functional Materials, 2016, 26, 5182-5188.                                                                                             | 7.8  | 25        |
| 473 | Cibbs–Curie–Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface<br>Energy and Crystal Growth. Advanced Materials, 2016, 28, 1697-1702.                                                                   | 11.1 | 88        |
| 474 | The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case<br>Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie - International Edition, 2016, 55,<br>5206-5209.                  | 7.2  | 51        |
| 475 | Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors. Langmuir, 2016, 32, 6246-6254.                                                               | 1.6  | 48        |
| 476 | Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by<br>introducing l€-conjugated heterocyclic bridging moieties. Journal of Materials Chemistry C, 2016, 4,<br>7230-7240.              | 2.7  | 25        |
| 477 | Plasmonic materials for flexible near-infrared photovoltaic devices. Science China Materials, 2016, 59, 410-411.                                                                                                                          | 3.5  | 2         |
| 478 | 2D Mica Crystal as Electret in Organic Field‣ffect Transistors for Multistate Memory. Advanced<br>Materials, 2016, 28, 3755-3760.                                                                                                         | 11.1 | 62        |
| 479 | Organic Cocrystal Photovoltaic Behavior: A Model System to Study Charge Recombination of<br>C <sub>60</sub> and C <sub>70</sub> at the Molecular Level. Advanced Electronic Materials, 2016, 2,<br>1500423.                               | 2.6  | 42        |
| 480 | Highâ€Mobility Nâ€Type Organic Fieldâ€Effect Transistors of Rylene Compounds Fabricated by a<br>Traceâ€Spinâ€Coating Technique. Advanced Electronic Materials, 2016, 2, 1500430.                                                          | 2.6  | 14        |
| 481 | 3D Self‣upporting Porous Magnetic Assemblies for Water Remediation and Beyond. Advanced Energy<br>Materials, 2016, 6, 1600473.                                                                                                            | 10.2 | 37        |
| 482 | Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides. Journal of Materials Chemistry A, 2016, 4, 5654-5662.                                                                    | 5.2  | 185       |
| 483 | Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward<br>Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors. ACS Applied Materials<br>& Interfaces, 2016, 8, 7919-7927. | 4.0  | 9         |
| 484 | Pyridyl-substituted anthracene derivatives with solid-state emission and charge transport properties.<br>Journal of Materials Chemistry C, 2016, 4, 3621-3627.                                                                            | 2.7  | 28        |
| 485 | Conjugated polymer with ternary electronâ€deficient units for ambipolar nanowire fieldâ€effect<br>transistors. Journal of Polymer Science Part A, 2016, 54, 34-38.                                                                        | 2.5  | 19        |
| 486 | Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016, 4, 2269-2273.                                                                     | 2.7  | 155       |

| #   | Article                                                                                                                                                                                                                      | IF       | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 487 | Unveiling Secrets of Overcoming the "Heteroatom Problem―in Palladium-Catalyzed Aerobic C–H<br>Functionalization of Heterocycles: A DFT Mechanistic Study. Journal of the American Chemical<br>Society, 2016, 138, 2712-2723. | 6.6      | 65           |
| 488 | Epitaxially-crystallized oriented naphthalene bis(dicarboximide) morphology for significant<br>performance improvement of electron-transporting thin-film transistors. Chemical Communications,<br>2016, 52, 4902-4905.      | 2.2      | 21           |
| 489 | Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins:<br>Facile syntheses and temporally dependent optical performance. Nano Research, 2016, 9, 458-472.                          | 5.8      | 31           |
| 490 | Poly(pentacyclic lactam-alt-diketopyrrolopyrrole) for field-effect transistors and polymer solar cells processed from non-chlorinated solvents. Polymer Chemistry, 2016, 7, 164-170.                                         | 1.9      | 18           |
| 491 | Topochemical polymerization of diacetylenes. Chinese Science Bulletin, 2016, 61, 2688-2706.                                                                                                                                  | 0.4      | 8            |
| 492 | Molecular Electronics: Nanogap Electrodes towards Solid State Singleâ€Molecule Transistors (Small) Tj ETQq0 0 0                                                                                                              | rgBT /Ov | erlock 10 Tf |
| 493 | Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing<br>Self-Solution-Shearing Method. Scientific Reports, 2015, 5, 13195.                                                     | 1.6      | 36           |
| 494 | Porphyrin Supramolecular 1D Structures via Surfactantâ€Assisted Selfâ€Assembly. Advanced Materials,<br>2015, 27, 5379-5387.                                                                                                  | 11.1     | 106          |
| 495 | High Performance Polymer Nanowire Fieldâ€Effect Transistors with Distinct Molecular Orientations.<br>Advanced Materials, 2015, 27, 4963-4968.                                                                                | 11.1     | 79           |
| 496 | Diaceno[ <i>a</i> , <i>e</i> ]pentalenes: An Excellent Molecular Platform for Highâ€Performance Organic<br>Semiconductors. Chemistry - A European Journal, 2015, 21, 17016-17022.                                            | 1.7      | 48           |
| 497 | Nanogap Electrodes towards Solid State Singleâ€Molecule Transistors. Small, 2015, 11, 6115-6141.                                                                                                                             | 5.2      | 47           |
| 498 | Molecular Heterojunctions of Oligo(phenylene ethynylene)s with Linear to Cruciform Framework.<br>Advanced Functional Materials, 2015, 25, 1700-1708.                                                                         | 7.8      | 29           |
| 499 | Highâ€Performance UV‣ensitive Organic Phototransistors Based on<br>Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i> ]dithiophene Dimers Linked with Unsaturated Bonds. Advanced Electronic<br>Materials, 2015, 1, 1500071.              | 2.6      | 31           |
| 500 | Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.                                                                       | 1.9      | 34           |
| 501 | High-performance organic field-effect transistors based on single-crystalline microribbons of a<br>two-dimensional fused heteroarene semiconductor. Chemical Communications, 2015, 51, 11961-11963.                          | 2.2      | 18           |
| 502 | Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). Chemical Communications, 2015, 51, 11777-11779.                                                                                                         | 2.2      | 107          |
| 503 | Thermal induced single grain boundary break junction for suspended nanogap electrodes. Science<br>China Materials, 2015, 58, 769-774.                                                                                        | 3.5      | 4            |
| 504 | Challenges of organic "cocrystals― Science China Materials, 2015, 58, 854-859.                                                                                                                                               | 3.5      | 39           |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 505 | Modulating the metal/organic interface via CuTCNQ decorated layer toward high performance bottom-contact single-crystal transistors. Science China Chemistry, 2015, 58, 1027-1031.                                         | 4.2  | 2         |
| 506 | Precisely Tailoring the Stoichiometric Stacking of Peryleneâ€TCNQ Coâ€Crystals towards Different Nano<br>and Microstructures with Varied Optoelectronic Performances. Small, 2015, 11, 2150-2156.                          | 5.2  | 79        |
| 507 | Organic field-effect transistor-based gas sensors. Chemical Society Reviews, 2015, 44, 2087-2107.                                                                                                                          | 18.7 | 373       |
| 508 | Solutionâ€Processed Largeâ€Area Nanocrystal Arrays of Metal–Organic Frameworks as Wearable,<br>Ultrasensitive, Electronic Skin for Health Monitoring. Small, 2015, 11, 3351-3356.                                          | 5.2  | 75        |
| 509 | High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene<br>hybrids by optimizing hydrogen bonds. Nanoscale, 2015, 7, 16214-16221.                                                    | 2.8  | 61        |
| 510 | Individual single-crystal nanowires as electrodes for organic single-crystal nanodevices. Journal of<br>Materials Chemistry C, 2015, 3, 9534-9539.                                                                         | 2.7  | 4         |
| 511 | Rational Design of Charge-Transfer Interactions in Halogen-Bonded Co-crystals toward Versatile<br>Solid-State Optoelectronics. Journal of the American Chemical Society, 2015, 137, 11038-11046.                           | 6.6  | 246       |
| 512 | Conjugated polymers with deep LUMO levels for field-effect transistors and polymer–polymer solar cells. Journal of Materials Chemistry C, 2015, 3, 8255-8261.                                                              | 2.7  | 23        |
| 513 | A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties. Journal of Materials Chemistry C, 2015, 3, 3068-3071.                                                         | 2.7  | 35        |
| 514 | The position effect of an ethynyl spacer on the carrier mobility of anthracene derivatives. Journal of<br>Materials Chemistry C, 2015, 3, 5368-5371.                                                                       | 2.7  | 14        |
| 515 | Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1–2<br>nm by Focused Ion Beam Milling. Advanced Materials, 2015, 27, 3002-3006.                                                | 11.1 | 59        |
| 516 | Revealing the Chargeâ€Transfer Interactions in Selfâ€Assembled Organic Cocrystals: Twoâ€Dimensional<br>Photonic Applications. Angewandte Chemie - International Edition, 2015, 54, 6785-6789.                              | 7.2  | 198       |
| 517 | Nanogap Electrodes: Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with<br>Gapwidth Down to 1–2 nm by Focused Ion Beam Milling (Adv. Mater. 19/2015). Advanced Materials, 2015,<br>27, 3095-3095.   | 11.1 | 4         |
| 518 | A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. Journal of Materials Chemistry A, 2015, 3, 16453-16460.                                                        | 5.2  | 63        |
| 519 | Structure property relationships of benzo[b]thiophen/benzo[b]furan end-capped naphthalene<br>oligomers and their application for organic field effect transistors. RSC Advances, 2015, 5, 31018-31023.                     | 1.7  | 8         |
| 520 | Side Chain Influence on the Morphology and Photovoltaic Performance of<br>5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. ACS Applied<br>Materials & Interfaces, 2015, 7, 10710-10717. | 4.0  | 38        |
| 521 | A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. Journal of Materials Chemistry A, 2015, 3, 11787-11795.                                                             | 5.2  | 89        |
| 522 | Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China<br>Materials, 2015, 58, 186-191.                                                                                          | 3.5  | 58        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 523 | Naphthyl substituted anthracene combining charge transport with light emission. Journal of Materials Chemistry C, 2015, 3, 10695-10698.                                                                  | 2.7  | 28        |
| 524 | Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.<br>Nano Letters, 2015, 15, 8091-8098.                                                                  | 4.5  | 12        |
| 525 | Synthesis and application of benzooxadiazole-based conjugated polymers in high performance phototransistors. Journal of Materials Chemistry C, 2015, 3, 12083-12089.                                     | 2.7  | 5         |
| 526 | Touching polymer chains by organic field-effect transistors. Scientific Reports, 2015, 4, 6387.                                                                                                          | 1.6  | 5         |
| 527 | Polyimide (PI) high-quality polymer dielectric films with the features of anti-solvents and large-area consistency for field-effect transistors. RSC Advances, 2015, 5, 88059-88062.                     | 1.7  | 6         |
| 528 | Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. Nature Communications, 2015, 6, 7478.                                              | 5.8  | 43        |
| 529 | High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors<br>and solar cells. Polymer Chemistry, 2015, 6, 7684-7692.                                          | 1.9  | 7         |
| 530 | High mobility emissive organic semiconductor. Nature Communications, 2015, 6, 10032.                                                                                                                     | 5.8  | 420       |
| 531 | Poly(sodium-4-styrene sulfonate) (PSSNa)-assisted transferable flexible, top-contact high-resolution free-standing organic field-effect transistors. RSC Advances, 2015, 5, 98288-98292.                 | 1.7  | 11        |
| 532 | Synthesis, characterization and field-effect transistor performance of a benzoannulated pentathienoacene derivative. New Journal of Chemistry, 2015, 39, 1045-1050.                                      | 1.4  | 3         |
| 533 | Tuning the Crystal Polymorphs of Alkyl Thienoacene via Solution Selfâ€Assembly Toward Airâ€Stable and<br>Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 825-830.     | 11.1 | 106       |
| 534 | Competitive Adsorption of Pb <sup>II</sup> , Ni <sup>II</sup> , and Sr <sup>II</sup> lons on Graphene<br>Oxides: A Combined Experimental and Theoretical Study. ChemPlusChem, 2015, 80, 480-484.         | 1.3  | 97        |
| 535 | Three-Dimensional Multilayer Assemblies of MoS <sub>2</sub> /Reduced Graphene Oxide for<br>High-Performance Lithium Ion Batteries. Particle and Particle Systems Characterization, 2015, 32,<br>489-497. | 1.2  | 36        |
| 536 | High-mobility polymeric semiconductors. Chinese Science Bulletin, 2015, 60, 2169-2187.                                                                                                                   | 0.4  | 9         |
| 537 | Enhancement of thermoelectric performance in InAs nanotubes by tuning quantum confinement<br>effect. Journal of Applied Physics, 2014, 115, .                                                            | 1.1  | 17        |
| 538 | Copolymers of benzo[1,2-b:4,5-b′]dithiophene and bithiazole for high-performance thin film phototransistors. Journal of Materials Chemistry C, 2014, 2, 9505-9511.                                       | 2.7  | 25        |
| 539 | Transistors: Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh<br>Photoresponsivity (Adv. Mater. 27/2014). Advanced Materials, 2014, 26, 4752-4752.                | 11.1 | 1         |
| 540 | Synthesis, characterization, and field-effect transistor performance of a two-dimensional starphene containing sulfur. Journal of Materials Chemistry C, 2014, 2, 10011-10016.                           | 2.7  | 12        |

| #   | Article                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 541 | π onjugated Molecules Crosslinked Grapheneâ€Based Ultrathin Films and Their Tunable Performances<br>in Organic Nanoelectronics. Advanced Functional Materials, 2014, 24, 543-554.                                                                                                     | 7.8  | 26        |
| 542 | Selfâ€Aligned Singleâ€Crystal Graphene Grains. Advanced Functional Materials, 2014, 24, 1664-1670.                                                                                                                                                                                    | 7.8  | 47        |
| 543 | "Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High<br>Resolution: Towards Allâ€Solutionâ€Processed, Highâ€Performance, Bottomâ€Contacted, Flexible,<br>Polymerâ€Based Electronics. Advanced Functional Materials, 2014, 24, 3783-3789. | 7.8  | 29        |
| 544 | Nearâ€Equilibrium Chemical Vapor Deposition of Highâ€Quality Singleâ€Crystal Graphene Directly on<br>Various Dielectric Substrates. Advanced Materials, 2014, 26, 1348-1353.                                                                                                          | 11.1 | 132       |
| 545 | Graphene: Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene<br>Directly on Various Dielectric Substrates (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1471-1471.                                                                              | 11.1 | 1         |
| 546 | Rubrene analogues with the aggregation-induced emission enhancement behaviour. Journal of<br>Materials Chemistry C, 2014, 2, 884-890.                                                                                                                                                 | 2.7  | 22        |
| 547 | Easily solution-processed, high-performance microribbon transistors based on a 2D condensed benzothiophene derivative. Chemical Communications, 2014, 50, 442-444.                                                                                                                    | 2.2  | 38        |
| 548 | Solution-processed high-performance flexible 9, 10-bis(phenylethynyl)anthracene organic single-crystal transistor and ring oscillator. Applied Physics Letters, 2014, 104, .                                                                                                          | 1.5  | 28        |
| 549 | Graphene: Layerâ€Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures<br>(Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3355-3355.                                                                                                                   | 11.1 | Ο         |
| 550 | A novel method for photolithographic polymer shadow masking: toward high-resolution<br>high-performance top-contact organic field effect transistors. Chemical Communications, 2014, 50,<br>8328-8330.                                                                                | 2.2  | 22        |
| 551 | Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. Journal of Materials Chemistry C, 2014, 2, 1264.                                                                                                                         | 2.7  | 60        |
| 552 | Enhancement of the p-channel performance of sulfur-bridged annulene through a donor–acceptor<br>co-crystal approach. Journal of Materials Chemistry C, 2014, 2, 8886-8891.                                                                                                            | 2.7  | 28        |
| 553 | High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. Physical Chemistry Chemical Physics, 2014, 16, 22448-22457.                                                                                                                     | 1.3  | 178       |
| 554 | 5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.                                                                                                                         | 2.7  | 27        |
| 555 | Two-dimensional Cr <sub>2</sub> O <sub>3</sub> and interconnected<br>graphene–Cr <sub>2</sub> O <sub>3</sub> nanosheets: synthesis and their application in lithium<br>storage. Journal of Materials Chemistry A, 2014, 2, 944-948.                                                   | 5.2  | 48        |
| 556 | A thienyl peripherally substituted rubrene analogue with constant emissions and good film forming ability. Journal of Materials Chemistry C, 2014, 2, 8222-8225.                                                                                                                      | 2.7  | 10        |
| 557 | Porphyrin NanoassembliesviaSurfactant-Assisted Assembly and Single Nanofiber Nanoelectronic<br>Sensors for High-Performance H2O2Vapor Sensing. ACS Nano, 2014, 8, 3402-3411.                                                                                                          | 7.3  | 82        |
| 558 | Synthesis and aggregation-induced emissions of thienyl substituted cyclobutene derivatives. Journal of Materials Chemistry C, 2014, 2, 5083-5086.                                                                                                                                     | 2.7  | 11        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 559 | Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh<br>Photoresponsivity. Advanced Materials, 2014, 26, 4683-4689.                                                                                         | 11.1 | 82        |
| 560 | Silver mirror reaction for organic electronics: towards high-performance organic field-effect transistors and circuits. Journal of Materials Chemistry C, 2014, 2, 4142.                                                                       | 2.7  | 29        |
| 561 | Chargeâ€Transfer Complex Crystal Based on Extendedâ€Ï€â€Conjugated Acceptor and Sulfurâ€Bridged<br>Annulene: Chargeâ€Transfer Interaction and Remarkable High Ambipolar Transport Characteristics.<br>Advanced Materials, 2014, 26, 4093-4099. | 11.1 | 132       |
| 562 | Organic Electronics: "Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and<br>Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance,                                                        |      |           |
|     |                                                                                                                                                                                                                                                |      |           |

| #   | Article                                                                                                                                                                                                                | IF               | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 577 | Atomically Flat, Largeâ€&ized, Twoâ€Đimensional Organic Nanocrystals. Small, 2013, 9, 990-995.                                                                                                                         | 5.2              | 51           |
| 578 | Glossary of the book. , 2013, , 487-495.                                                                                                                                                                               |                  | 0            |
| 579 | Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction. Journal of the<br>American Chemical Society, 2013, 135, 9050-9054.                                                                   | 6.6              | 63           |
| 580 | Highly Stable Grapheneâ€Based Multilayer Films Immobilized via Covalent Bonds and Their Applications<br>in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2013, 23, 2422-2435.                      | 7.8              | 56           |
| 581 | Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. RSC Advances, 2013, 3, 12909.                                         | 1.7              | 89           |
| 582 | N-Alkyl substituted di(perylene bisimides) as air-stable electron transport materials for<br>solution-processible thin-film transistors with enhanced performance. Journal of Materials<br>Chemistry C, 2013, 1, 3200. | 2.7              | 42           |
| 583 | High Performance Nanocrystals of a Donor–Acceptor Conjugated Polymer. Chemistry of Materials,<br>2013, 25, 2649-2655.                                                                                                  | 3.2              | 64           |
| 584 | High Performance Photoswitches Based on Flexible and Amorphous D–A Polymer Nanowires. Small, 2013, 9, 294-299.                                                                                                         | 5.2              | 25           |
| 585 | Organic Nanocrystals: Atomically Flat, Large‣ized, Twoâ€Dimensional Organic Nanocrystals (Small) Tj ETQq1                                                                                                              | 1 0.78431<br>5.2 | 4 rgBT /Over |
| 586 | Visibleâ€Light Photocatalytic Degradation of Methylene Blue Using<br>SnO <sub>2</sub> /αâ€Fe <sub>2</sub> O <sub>3</sub> Hierarchical Nanoheterostructures. ChemPlusChem,<br>2013, 78, 192-199.                        | 1.3              | 69           |
| 587 | Substrateâ€Free Ultraâ€Flexible Organic Fieldâ€Effect Transistors and Fiveâ€&tage Ring Oscillators. Advanced<br>Materials, 2013, 25, 5455-5460.                                                                        | 11.1             | 106          |
| 588 | Single crystal field-effect transistors containing a pentacene analogue and their application in ethanol vapor detection. Applied Physics Letters, 2012, 101, 103302.                                                  | 1.5              | 26           |
| 589 | Growth of large-size-two-dimensional crystalline pentacene grains for high performance organic thin film transistors. AIP Advances, 2012, 2, 022138.                                                                   | 0.6              | 6            |
| 590 | Substitution effect on molecular packing and transistor performance of indolo[3,2-b]carbazole derivatives. Journal of Materials Chemistry, 2012, 22, 4409-4417.                                                        | 6.7              | 54           |
| 591 | High performance n-type single crystalline transistors of naphthalene bis(dicarboximide) and their anisotropic transport in crystals. Chemical Communications, 2012, 48, 5154.                                         | 2.2              | 38           |
| 592 | Synthesis of a Conjugated Polymer with Broad Absorption and Its Application in High-Performance Phototransistors. Macromolecules, 2012, 45, 1296-1302.                                                                 | 2.2              | 86           |
| 593 | A conjugated polymer based on 5,5′-bibenzo[c][1,2,5]thiadiazole for high-performance solar cells.<br>Journal of Materials Chemistry, 2012, 22, 3432.                                                                   | 6.7              | 19           |
| 594 | Interface engineering for high-performance organic field-effect transistors. Physical Chemistry<br>Chemical Physics, 2012, 14, 14165.                                                                                  | 1.3              | 85           |

| #   | Article                                                                                                                                                                                              | IF                 | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 595 | Photovoltaic effect of individual polymer nanotube. Applied Physics Letters, 2012, 100, 173902.                                                                                                      | 1.5                | 6         |
| 596 | Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance. Organic Electronics, 2012, 13, 2372-2378.                              | 1.4                | 23        |
| 597 | Themed issue on "organic optoelectronic materialsâ€: Journal of Materials Chemistry, 2012, 22,<br>4134-4135.                                                                                         | 6.7                | 10        |
| 598 | Synthesizing MnO <sub>2</sub> nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chemical Science, 2012, 3, 433-437.                                               | 3.7                | 194       |
| 599 | Massâ€Production of Singleâ€Crystalline Device Arrays of an Organic Chargeâ€Transfer Complex for its<br>Memory Nature. Small, 2012, 8, 557-560.                                                      | 5.2                | 28        |
| 600 | Device Arrays: Mass-Production of Single-Crystalline Device Arrays of an Organic Charge-Transfer<br>Complex for its Memory Nature (Small 4/2012). Small, 2012, 8, 478-478.                           | 5.2                | 1         |
| 601 | Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic<br>Electronics. Chemical Reviews, 2012, 112, 2208-2267.                                               | 23.0               | 3,164     |
| 602 | Organic photoresponse materials and devices. Chemical Society Reviews, 2012, 41, 1754-1808.                                                                                                          | 18.7               | 570       |
| 603 | Highâ€Performance and Stable Organic Transistors and Circuits with Patterned Polypyrrole Electrodes.<br>Advanced Materials, 2012, 24, 2159-2164.                                                     | 11.1               | 50        |
| 604 | Coaxial Organic pâ€n Heterojunction Nanowire Arrays: Oneâ€Step Synthesis and Photoelectric Properties.<br>Advanced Materials, 2012, 24, 2332-2336.                                                   | 11.1               | 88        |
| 605 | High Mobility, Air Stable, Organic Single Crystal Transistors of an nâ€Type Diperylene Bisimide. Advanced<br>Materials, 2012, 24, 2626-2630.                                                         | 11.1               | 199       |
| 606 | Sulfurâ€Bridged Annuleneâ€TCNQ Coâ€Crystal: A Selfâ€Assembled â€~ã€~Molecular Level Heterojunction''<br>Stable Ambipolar Charge Transport Behavior. Advanced Materials, 2012, 24, 2603-2607.         | M with Air<br>11.1 | 207       |
| 607 | Anisotropic Photoresponse Properties of Single Micrometerâ€Sized GeSe Nanosheet. Advanced<br>Materials, 2012, 24, 4528-4533.                                                                         | 11.1               | 229       |
| 608 | Plasma Synthesis of Surfaceâ€Functionalized Grapheneâ€Based Platinum Nanoparticles: Highly Active<br>Electrocatalysts as Electrodes for Direct Methanol Fuel Cells. ChemPlusChem, 2012, 77, 432-436. | 1.3                | 30        |
| 609 | Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7992-7996.                   | 3.3                | 417       |
| 610 | Single crystal n-channel field effect transistors from solution-processed silylethynylated tetraazapentacene. Journal of Materials Chemistry, 2011, 21, 15201.                                       | 6.7                | 48        |
| 611 | Morphology control for high performance organic thin film transistors. Chemical Science, 2011, 2, 590-600.                                                                                           | 3.7                | 108       |
| 612 | Physicochemical, self-assembly and field-effect transistor properties of anti- and syn- thienoacene isomers. Journal of Materials Chemistry, 2011, 21, 11335.                                        | 6.7                | 18        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 613 | Nonvolatile memory effect of a functional polyimide containing ferrocene as the electroactive moiety. Applied Physics Letters, 2011, 98, 203302.                                                                         | 1.5  | 39        |
| 614 | Controlled growth and assembly of one-dimensional ordered nanostructures of organic functional materials. Soft Matter, 2011, 7, 1615-1630.                                                                               | 1.2  | 50        |
| 615 | Solution-Processed, High-Performance Nanoribbon Transistors Based on Dithioperylene. Journal of the American Chemical Society, 2011, 133, 1-3.                                                                           | 6.6  | 255       |
| 616 | Recent progress of high performance organic thin film field-effect transistors. Journal of Materials Chemistry, 2011, 21, 11708.                                                                                         | 6.7  | 67        |
| 617 | 9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells.<br>Macromolecules, 2011, 44, 7617-7624.                                                                                    | 2.2  | 99        |
| 618 | A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance.<br>Macromolecules, 2011, 44, 9173-9179.                                                                                     | 2.2  | 61        |
| 619 | New X-shaped oligothiophenes for solution-processed solar cells. Journal of Materials Chemistry, 2011, 21, 9667.                                                                                                         | 6.7  | 43        |
| 620 | Organic single crystalline micro- and nanowires field-effect transistors of a tetrathiafulvalene (TTF)<br>derivative with strong π–π orbits and Sâ< S interactions. Synthetic Metals, 2011, 161, 136-142.                | 2.1  | 12        |
| 621 | Experimental Techniques for the Fabrication and Characterization of Organic Thin Films for Field-Effect Transistors. Chemical Reviews, 2011, 111, 3358-3406.                                                             | 23.0 | 241       |
| 622 | Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011, 4, 1208-1214.                                                                                                | 5.8  | 120       |
| 623 | A new pseudo rubrene analogue with excellent film forming ability. Science China Chemistry, 2011, 54, 631-635.                                                                                                           | 4.2  | 4         |
| 624 | Thiazolothiazole ontaining polythiophenes with low HOMO level and high hole mobility for polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4875-4885.                                                    | 2.5  | 25        |
| 625 | Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility. Small, 2011, 7, 189-193.                                                                                                      | 5.2  | 51        |
| 626 | Organic Nanowires: Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility (Small 2/2011). Small, 2011, 7, 162-162.                                                                    | 5.2  | 1         |
| 627 | Inkjetâ€Printed Organic Electrodes for Bottomâ€Contact Organic Fieldâ€Effect Transistors. Advanced<br>Functional Materials, 2011, 21, 786-791.                                                                           | 7.8  | 29        |
| 628 | Millimeter‧ized Molecular Monolayer Twoâ€Ðimensional Crystals. Advanced Materials, 2011, 23,<br>2059-2063.                                                                                                               | 11.1 | 198       |
| 629 | Allâ€Solutionâ€Processed, Highâ€Performance nâ€Channel Organic Transistors and Circuits: Toward<br>Lowâ€Cost Ambient Electronics. Advanced Materials, 2011, 23, 2448-2453.                                               | 11.1 | 172       |
| 630 | Highâ€Performance Organic Singleâ€Crystal Fieldâ€Effect Transistors of Indolo[3,2â€b]carbazole and Their<br>Potential Applications in Gas Controlled Organic Memory Devices. Advanced Materials, 2011, 23,<br>5075-5080. | 11.1 | 78        |

| #   | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 631 | Mica, a Potential Twoâ€Dimensionalâ€Crystal Gate Insulator for Organic Fieldâ€Effect Transistors.<br>Advanced Materials, 2011, 23, 5502-5507.                                                                                                                                | 11.1 | 92        |
| 632 | Organic Field-Effect Transistors: High-Performance Organic Single-Crystal Field-Effect Transistors of<br>Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices<br>(Adv. Mater. 43/2011). Advanced Materials, 2011, 23, 5074-5074. | 11.1 | 3         |
| 633 | Controlling Molecular Packing for Charge Transport in Organic Thin Films. Advanced Energy<br>Materials, 2011, 1, 188-193.                                                                                                                                                    | 10.2 | 36        |
| 634 | Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties. Applied Physics Letters, 2010, 96, .                                                                                  | 1.5  | 50        |
| 635 | Organic single crystal field-effect transistors: advances and perspectives. Journal of Materials<br>Chemistry, 2010, 20, 4994.                                                                                                                                               | 6.7  | 154       |
| 636 | Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications. Science China Chemistry, 2010, 53, 1225-1234.                                                                                                             | 4.2  | 6         |
| 637 | Highâ€Performance Phototransistors Based on Organic Microribbons Prepared by a Solution<br>Selfâ€Assembly Process. Advanced Functional Materials, 2010, 20, 1019-1024.                                                                                                       | 7.8  | 119       |
| 638 | "Water Strider―Legs with a Selfâ€Assembled Coating of Singleâ€Crystalline Nanowires of an Organic<br>Semiconductor. Advanced Materials, 2010, 22, 376-379.                                                                                                                   | 11.1 | 65        |
| 639 | Organic Single Crystal Fieldâ€effect Transistors Based on<br>6 <i>H</i> â€pyrrolo[3,2– <i>b</i> :4,5– <i>b´</i> ]bis[1,4]benzothiazine and its Derivatives. Advanced<br>Materials, 2010, 22, 2458-2462.                                                                      | 11.1 | 56        |
| 640 | Electric Current Induced Reduction of Graphene Oxide and Its Application as Gap Electrodes in Organic Photoswitching Devices. Advanced Materials, 2010, 22, 5008-5012.                                                                                                       | 11.1 | 88        |
| 641 | Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. Applied Physics Letters, 2010, 97, .                                                                                                                                   | 1.5  | 67        |
| 642 | Template-free solution growth of highly regular, crystal orientation-ordered<br>C <sub>60</sub> nanorod bundles. Journal of Materials Chemistry, 2010, 20, 953-956.                                                                                                          | 6.7  | 21        |
| 643 | High performance organic semiconductors for field-effect transistors. Chemical Communications, 2010, 46, 5211.                                                                                                                                                               | 2.2  | 313       |
| 644 | Polymer Brush and Inorganic Oxide Hybrid Nanodielectrics for High Performance Organic<br>Transistors. Journal of Physical Chemistry B, 2010, 114, 5315-5319.                                                                                                                 | 1.2  | 36        |
| 645 | Dibenzothiophene Derivatives: From Herringbone to Lamellar Packing Motif. Crystal Growth and Design, 2010, 10, 4155-4160.                                                                                                                                                    | 1.4  | 84        |
| 646 | Assembled Organic/Inorganic pâ^'n Junction Interface and Photovoltaic Cell on a Single Nanowire.<br>Journal of Physical Chemistry Letters, 2010, 1, 327-330.                                                                                                                 | 2.1  | 134       |
| 647 | Solution-Based Fabrication of Single-Crystalline Arrays of Organic Nanowires. Langmuir, 2010, 26, 1130-1136.                                                                                                                                                                 | 1.6  | 50        |
| 648 | Micro- and Nanocrystals of Organic Semiconductors. Accounts of Chemical Research, 2010, 43, 529-540.                                                                                                                                                                         | 7.6  | 370       |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 649 | Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. Chemical Communications, 2010, 46, 2841.                               | 2.2  | 35        |
| 650 | Tuning intermolecular non-covalent interactions for nanowires of organic semiconductors.<br>Nanoscale, 2010, 2, 2652.                                                                        | 2.8  | 24        |
| 651 | Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene.<br>Journal of Materials Chemistry, 2010, 20, 6014.                                        | 6.7  | 36        |
| 652 | High performance ultraviolet photodetectors based on an individual Zn2SnO4 single crystalline nanowire. Journal of Materials Chemistry, 2010, 20, 9858.                                      | 6.7  | 46        |
| 653 | Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons. Journal of Materials Chemistry, 2010, 20, 7029.         | 6.7  | 42        |
| 654 | Organic Single-Crystalline pâ^'n Junction Nanoribbons. Journal of the American Chemical Society, 2010, 132, 11580-11584.                                                                     | 6.6  | 208       |
| 655 | Development of organic field-effect properties by introducing aryl-acetylene into benzodithiophene.<br>Journal of Materials Chemistry, 2010, 20, 10931.                                      | 6.7  | 26        |
| 656 | Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor. Journal of Materials Chemistry, 2010, 20, 1203-1207.             | 6.7  | 26        |
| 657 | Hybrid bipolar transistors and inverters of nanoribbon crystals. Applied Physics Letters, 2009, 94, 203304.                                                                                  | 1.5  | 15        |
| 658 | Langmuir–Blogett monolayer transistors of copper phthalocyanine. Applied Physics Letters, 2009, 95, .                                                                                        | 1.5  | 24        |
| 659 | Single crystalline microribbons of perylo[1,12-b,c,d]selenophene for high performance transistors.<br>Applied Physics Letters, 2009, 94, .                                                   | 1.5  | 48        |
| 660 | Metastable Copperâ€Phthalocyanine Singleâ€Crystal Nanowires and Their Use in Fabricating<br>Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2009, 19, 3776-3780. | 7.8  | 81        |
| 661 | Battery Drivable Organic Singleâ€Crystalline Transistors Based on Surface Grafting Ultrathin Polymer<br>Dielectric. Advanced Functional Materials, 2009, 19, 2987-2991.                      | 7.8  | 28        |
| 662 | Micrometer―and Nanometerâ€Sized, Singleâ€Crystalline Ribbons of a Cyclic Triphenylamine Dimer and Their<br>Application in Organic Transistors. Advanced Materials, 2009, 21, 1605-1608.      | 11.1 | 22        |
| 663 | Highâ€Performance Organic Singleâ€Crystal Transistors and Digital Inverters of an Anthracene<br>Derivative. Advanced Materials, 2009, 21, 3649-3653.                                         | 11.1 | 125       |
| 664 | Micrometer‣ized Organic Single Crystals, Anisotropic Transport, and Fieldâ€Effect Transistors of a<br>Fusedâ€Ring Thienoacene. Advanced Materials, 2009, 21, 4492-4495.                      | 11.1 | 106       |
| 665 | Assembly of Nanoscale Organic Singleâ€Crystal Crossâ€Wire Circuits. Advanced Materials, 2009, 21,<br>4234-4237.                                                                              | 11.1 | 109       |
| 666 | Field-effect transistor chemical sensors of single nanoribbon of copper phthalocyanine. Science in<br>China Series B: Chemistry, 2009, 52, 751-754.                                          | 0.8  | 29        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 667 | Tuning reaction processes for the synthesis of micron and nanometer sized, single crystalline<br>lamellae of copper 7,7,8,8-tetracyano-p-quinodimethane (Phase II) with large area. Nano Research, 2009,<br>2, 630-637.                                                                      | 5.8  | 13        |
| 668 | Water-controlled synthesis of low-dimensional molecular crystals and the fabrication of a new water and moisture indicator. Nano Research, 2009, 2, 857.                                                                                                                                     | 5.8  | 18        |
| 669 | High-Performance, Stable Organic Field-Effect Transistors Based on<br><i>trans</i> -1,2-(Dithieno[2,3- <i>b</i> :3′,2′- <i>d</i> ]thiophene)ethene. Chemistry of Materials, 2009, 21,<br>1993-1999.                                                                                          | 3.2  | 103       |
| 670 | Nanowire Crystals of a Rigid Rod Conjugated Polymer. Journal of the American Chemical Society, 2009, 131, 17315-17320.                                                                                                                                                                       | 6.6  | 141       |
| 671 | Molecular Orientation and Field-effect Transistors of a Rigid Rod Conjugated Polymer Thin Films.<br>Journal of Physical Chemistry B, 2009, 113, 4176-4180.                                                                                                                                   | 1.2  | 34        |
| 672 | Cruciforms: Assembling Single Crystal Micro- and Nanostructures from One to Three Dimensions and<br>Their Applications in Organic Field-Effect Transistors. Chemistry of Materials, 2009, 21, 2840-2845.                                                                                     | 3.2  | 103       |
| 673 | Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene. Applied Physics Letters, 2009, 94, .                                                                                                                                           | 1.5  | 42        |
| 674 | Langmuirâ^'Blodgett Monolayer as an Efficient p-Conducting Channel of Ambipolar Organic<br>Transistors and a Template for n-Type Molecular Alignment. Langmuir, 2009, 25, 3349-3351.                                                                                                         | 1.6  | 33        |
| 675 | Polymer reptation for molecular assembly of copper phthalocyanine. Applied Physics Letters, 2009, 95, 113301.                                                                                                                                                                                | 1.5  | 11        |
| 676 | Synthesis, packing arrangement and transistor performance of dimers of dithienothiophenes. Journal of Materials Chemistry, 2009, 19, 8216.                                                                                                                                                   | 6.7  | 31        |
| 677 | New type of organic semiconductors for field-effect transistors with carbon-carbon triple bonds.<br>Journal of Materials Chemistry, 2009, 19, 1477.                                                                                                                                          | 6.7  | 41        |
| 678 | Optimizing molecular orientation for high performance organic thin film transistors based on titanyl phthalocyanine. Journal of Materials Chemistry, 2009, 19, 5507.                                                                                                                         | 6.7  | 9         |
| 679 | Electroplating silver tetracyanoquinodimethane between gold micro-gap electrodes for the fabrication of coplanar devices, a new way to integrate material synthesis and devices fabrication within one step. Applied Physics A: Materials Science and Processing, 2008, 91, 301-303.         | 1.1  | 8         |
| 680 | Highâ€Performance Air‣table Bipolar Fieldâ€Effect Transistors of Organic Singleâ€Crystalline Ribbons with<br>an Airâ€Gap Dielectric. Advanced Materials, 2008, 20, 1511-1515.                                                                                                                | 11.1 | 157       |
| 681 | Organic Singleâ€Crystalline Ribbons of a Rigid "Hâ€â€ŧype Anthracene Derivative and Highâ€Performance,<br>Shortâ€Channel Fieldâ€Effect Transistors of Individual Micro/Nanometerâ€&ized Ribbons Fabricated by an<br>"Organic Ribbon Mask―Technique. Advanced Materials, 2008, 20, 2735-2740. | 11.1 | 161       |
| 682 | Micrometer―and Nanometer‧ized Organic Singleâ€Crystalline Transistors. Advanced Materials, 2008, 20,<br>2947-2951.                                                                                                                                                                           | 11.1 | 212       |
| 683 | Air-stable ambipolar field-effect transistors based on copper phthalocyanine and tetracyanoquinodimethane. Research on Chemical Intermediates, 2008, 34, 147-153.                                                                                                                            | 1.3  | 2         |
| 684 | Light-Controlled Organic/Inorganic Pâ^'N Junction Nanowires. Journal of the American Chemical<br>Society, 2008, 130, 9198-9199.                                                                                                                                                              | 6.6  | 162       |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 685 | Single-Crystalline, Size, and Orientation Controllable Nanowires and Ultralong Microwires of<br>Organic Semiconductor with Strong Photoswitching Property. Journal of the American Chemical<br>Society, 2008, 130, 3937-3941.         | 6.6 | 133       |
| 686 | Air-stable ambipolar organic field-effect transistor based on a novel bi-channel structure. Journal of<br>Materials Chemistry, 2008, 18, 2420.                                                                                        | 6.7 | 18        |
| 687 | 6H-Pyrrolo[3,2-b:4,5-bâ€2]bis[1,4]benzothiazines: facilely synthesized semiconductors for organic<br>field-effect transistors. Journal of Materials Chemistry, 2008, 18, 4814.                                                        | 6.7 | 32        |
| 688 | Ordering Rigid Rod Conjugated Polymer Molecules for High Performance Photoswitchers. Langmuir, 2008, 24, 13241-13244.                                                                                                                 | 1.6 | 50        |
| 689 | Organic thin-film transistors of phthalocyanines. Pure and Applied Chemistry, 2008, 80, 2231-2240.                                                                                                                                    | 0.9 | 69        |
| 690 | Air/vacuum dielectric organic single crystalline transistors of copper-hexadecafluorophthalocyanine<br>ribbons. Applied Physics Letters, 2008, 92, 083309.                                                                            | 1.5 | 37        |
| 691 | Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors.<br>Journal of Materials Chemistry, 2007, 17, 1421.                                                                                 | 6.7 | 55        |
| 692 | A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage.<br>Journal of Materials Chemistry, 2007, 17, 3530.                                                                                | 6.7 | 27        |
| 693 | Tetrathia[22]annulene[2,1,2,1]: physical properties, crystal structure and application in organic field-effect transistors. Journal of Materials Chemistry, 2007, 17, 4377.                                                           | 6.7 | 40        |
| 694 | High-Performance Transistor Based on Individual Single-Crystalline Micrometer Wire of<br>Perylo[1,12-b,c,d]thiophene. Journal of the American Chemical Society, 2007, 129, 1882-1883.                                                 | 6.6 | 148       |
| 695 | Phase dependence of single crystalline transistors of tetrathiafulvalene. Applied Physics Letters, 2007, 91, .                                                                                                                        | 1.5 | 82        |
| 696 | Small Molecular Chromogenic Sensors for Hg2+: A Strong "Push-Pull―System Exists after Binding.<br>European Journal of Organic Chemistry, 2007, 2007, 2459-2463.                                                                       | 1.2 | 34        |
| 697 | A new morphology of copper 7,7,8,8-tetracyano-p-quinodimethane. Micron, 2007, 38, 536-542.                                                                                                                                            | 1.1 | 15        |
| 698 | Surface nanostructures orienting self-protection of an orthodontic nickel-titanium shape memory alloys wire. Science Bulletin, 2007, 52, 3020-3023.                                                                                   | 1.7 | 2         |
| 699 | Controlling the Growth of Single Crystalline Nanoribbons of Copper Tetracyanoquinodimethane for the Fabrication of Devices and Device Arrays. Journal of the American Chemical Society, 2006, 128, 12917-12922.                       | 6.6 | 104       |
| 700 | High-Performance Air-Stable n-Type Transistors with an Asymmetrical Device Configuration Based on<br>Organic Single-Crystalline Submicrometer/Nanometer Ribbons. Journal of the American Chemical<br>Society, 2006, 128, 14634-14639. | 6.6 | 242       |
| 701 | Advancing conjugated polymers into nanometer-scale devices. Pure and Applied Chemistry, 2006, 78, 1803-1822.                                                                                                                          | 0.9 | 9         |
| 702 | Synthesis and characterization of new type molecular wires with tetrathiafulvalene as redox center.<br>Journal of Polymer Science Part A, 2006, 44, 2707-2713.                                                                        | 2.5 | 12        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 703 | Progresses in organic field-effect transistors and molecular electronics. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 357-363.                                                            | 0.4 | 1         |
| 704 | Electron Transport in Self-Assembled Polymer Molecular Junctions. Physical Review Letters, 2006, 96, 027801.                                                                                                                             | 2.9 | 69        |
| 705 | Organic thin-film transistors with high mobilities and low operating voltages based on<br>5,5′-bis-biphenyl-dithieno[3,2-b:2′,3′-d]thiophene semiconductor and polymer gate dielectric. Applied<br>Physics Letters, 2006, 88, 242113.    | 1.5 | 41        |
| 706 | Kondo effect in quantum dots and molecular devices. Science Bulletin, 2005, 50, 2132-2139.                                                                                                                                               | 1.7 | 2         |
| 707 | A Self-Assembled Nano Optical Switch and Transistor Based on a Rigid Conjugated Polymer,<br>Thioacetyl-End-Functionalized Poly(para-phenylene ethynylene). Journal of the American Chemical<br>Society, 2005, 127, 2804-2805.            | 6.6 | 76        |
| 708 | Organic thin film transistors based on stable amorphous ladder tetraazapentacenes semiconductors.<br>Journal of Materials Chemistry, 2005, 15, 4894.                                                                                     | 6.7 | 65        |
| 709 | The gas sensitivity of a metal-insulator-semiconductor field-effect-transistor based on<br>Langmuir–Blodgett films of a new asymmetrically substituted phthalocyanine. Thin Solid Films, 2000,<br>360, 256-260.                          | 0.8 | 53        |
| 710 | An Organic Field-Effect-Transistor Based on Langmuir-Blodgett Films of a New Asymmetrically<br>Substituted Phthalocyanine, 1,8-Naphthaimide-Tri-Tert-Butylphthalocyanine. Molecular Crystals and<br>Liquid Crystals, 1999, 337, 511-514. | 0.3 | 5         |
| 711 | The application of Langmuir–Blodgett films of a new asymmetrically substituted phthalocyanine,<br>amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors. Synthetic<br>Metals, 1999, 104, 19-26.     | 2.1 | 34        |
| 712 | A Small Molecular Allâ€Organic Symmetric Lithiumâ€lon Battery. Angewandte Chemie, 0, , .                                                                                                                                                 | 1.6 | 1         |