Haipei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3282495/publications.pdf Version: 2024-02-01

HAIDELLIII

#	Article	IF	CITATIONS
1	Priming crops for the future: rewiring stress memory. Trends in Plant Science, 2022, 27, 699-716.	8.8	89
2	Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Scientific Reports, 2021, 11, 3613.	3.3	19
3	Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings. Plants, 2021, 10, 826.	3.5	10
4	Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat. International Journal of Molecular Sciences, 2021, 22, 5532.	4.1	11
5	Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum—Regulatory Networks of Grain Development and Abiotic Stress Response. International Journal of Molecular Sciences, 2020, 21, 7772.	4.1	8
6	Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. International Journal of Molecular Sciences, 2020, 21, 6017.	4.1	28
7	Transgenerational Effects of Water-Deficit and Heat Stress on Germination and Seedling Vigour—New Insights from Durum Wheat microRNAs. Plants, 2020, 9, 189.	3.5	26
8	Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Scientific Reports, 2019, 9, 14986.	3.3	22
9	Transcriptome profiling reveals genetic basis of disease resistance against Corynespora cassiicola in rubber tree (Hevea brasiliensis). Current Plant Biology, 2019, 17, 2-16.	4.7	22
10	Effects of Shading Stress on Grain Number, Yield, and Photosynthesis during Early Reproductive Growth in Wheat. Crop Science, 2019, 59, 363-378.	1.8	24
11	Genotypeâ€dependent changes in the phenolic content of durum under waterâ€deficit stress. Cereal Chemistry, 2018, 95, 59-78.	2.2	21
12	Genotypic water-deficit stress responses in durum wheat: association between physiological traits, microRNA regulatory modules and yield components. Functional Plant Biology, 2017, 44, 538.	2.1	21
13	Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Functional and Integrative Genomics, 2017, 17, 237-251.	3.5	34
14	Effects of Drought Stress on Pollen Sterility, Grain Yield, Abscisic Acid and Protective Enzymes in Two Winter Wheat Cultivars. Frontiers in Plant Science, 2017, 8, 1008.	3.6	75
15	SMARTER De-Stressed Cereal Breeding. Trends in Plant Science, 2016, 21, 909-925.	8.8	36
16	The Wheat GT Factor TaGT2L1D Negatively Regulates Drought Tolerance and Plant Development. Scientific Reports, 2016, 6, 27042.	3.3	33
17	H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. Journal of Plant Biology, 2016, 59, 260-270.	2.1	22
18	MicroRNA167-Directed Regulation of the Auxin Response Factors <i>GmARF8a</i> and <i>GmARF8b</i> Is Required for Soybean Nodulation and Lateral Root Development. Plant Physiology, 2015, 168, 984-999.	4.8	183

ΗΑΙΡΕΙ LIU

#	Article	IF	CITATIONS
19	Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop and Pasture Science, 2015, 66, 1024.	1.5	63
20	Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. PLoS ONE, 2015, 10, e0142799.	2.5	43