Gregory David

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3280993/publications.pdf

Version: 2024-02-01

516710 434195 1,481 33 16 31 citations g-index h-index papers 35 35 35 2144 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The origins of cancer cell dormancy. Current Opinion in Genetics and Development, 2022, 74, 101914.	3.3	11
2	Softly but surely: A new perspective on transcriptional repression. BioEssays, 2021, 43, 2000326.	2.5	O
3	Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 707-717.	5.6	204
4	The Contribution of Physiological and Accelerated Aging to Cancer Progression Through Senescence-Induced Inflammation. Frontiers in Oncology, 2021, 11, 747822.	2.8	5
5	Coregulator Sin3a Promotes Postnatal Murine \hat{l}^2 -Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response. Diabetes, 2020, 69, 1219-1231.	0.6	9
6	Uncoupling the Senescence-Associated Secretory Phenotype from Cell Cycle Exit via Interleukin-1 Inactivation Unveils Its Protumorigenic Role. Molecular and Cellular Biology, 2019, 39, .	2.3	68
7	NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nature Cell Biology, 2019, 21, 397-407.	10.3	232
8	Impaired Expression of Rearranged Immunoglobulin Genes and Premature p53 Activation Block B Cell Development in BMI1 Null Mice. Cell Reports, 2019, 26, 108-118.e4.	6.4	10
9	Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opinion on Therapeutic Targets, 2019, 23, 1041-1051.	3.4	41
10	Prostate-specific loss of UXT promotes cancer progression. Oncotarget, 2019, 10, 707-716.	1.8	6
11	The HDAC-Associated Sin3B Protein Represses DREAM Complex Targets and Cooperates with APC/C to Promote Quiescence. Cell Reports, 2018, 25, 2797-2807.e8.	6.4	30
12	Sin3a regulates epithelial progenitor cell fate during lung development. Development (Cambridge), 2017, 144, 2618-2628.	2.5	29
13	The chromatin-associated Sin3B protein is required for hematopoietic stem cell functions in mice. Blood, 2017, 129, 60-70.	1.4	17
14	The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence. Molecular and Cellular Biology, 2017, 37, .	2.3	9
15	The potential of targeting Sin3B and its associated complexes for cancer therapy. Expert Opinion on Therapeutic Targets, 2017, 21, 1051-1061.	3.4	7
16	Chromatin-Associated Protein SIN3B Prevents Prostate Cancer Progression by Inducing Senescence. Cancer Research, 2017, 77, 5339-5348.	0.9	9
17	Senescence Phenotypes Induced by Ras in Primary Cells. Methods in Molecular Biology, 2017, 1534, 17-30.	0.9	6
18	The Dual Role of Senescence in Pancreatic Ductal Adenocarcinoma. Advances in Cancer Research, 2016, 131, 1-20.	5.0	16

#	Article	IF	Citations
19	Emerging Roles of Epigenetic Regulator Sin3 in Cancer. Advances in Cancer Research, 2016, 130, 113-135.	5.0	44
20	Transcriptional repression of Sin3B by Bmi-1 prevents cellular senescence and is relieved by oncogene activation. Oncogene, 2015, 34, 4011-4017.	5.9	15
21	Structural insights into the assembly of the histone deacetylase-associated Sin3L/Rpd3L corepressor complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3669-78.	7.1	42
22	SIN3B, the SASP, and pancreatic cancer. Molecular and Cellular Oncology, 2014, 1, e969167.	0.7	5
23	Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. Journal of Clinical Investigation, 2014, 124, 2125-2135.	8.2	65
24	Abstract LB-322: The senescence-associated Sin3B protein promotes inflammation and pancreatic cancer progression. , 2014, , .		0
25	Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers. Cancer Biology and Therapy, 2012, 13, 992-1000.	3.4	9
26	A Novel Mammalian Complex Containing Sin3B Mitigates Histone Acetylation and RNA Polymerase II Progression within Transcribed Loci. Molecular and Cellular Biology, 2011, 31, 54-62.	2.3	77
27	The Human Ankyrin Insulator Supports Production of Therapeutic Levels of Adult Hemoglobin Following \hat{I}^2 -Globin Gene Transfer in Hematopoietic Cells Derived From Thalassemic and Sickle Cell Patients. Blood, 2011, 118, 2055-2055.	1.4	6
28	The Mammalian Sin3 Proteins Are Required for Muscle Development and Sarcomere Specification. Molecular and Cellular Biology, 2010, 30, 5686-5697.	2.3	59
29	Ras-Induced Senescence and its Physiological Relevance in Cancer. Current Cancer Drug Targets, 2010, 10, 869-876.	1.6	60
30	Sin3B Expression Is Required for Cellular Senescence and Is Up-regulated upon Oncogenic Stress. Cancer Research, 2009, 69, 6430-6437.	0.9	46
31	Sin3B: An essential regulator of chromatin modifications at E2F target promoters during cell cycle withdrawal. Cell Cycle, 2008, 7, 1550-1554.	2.6	27
32	Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4168-4172.	7.1	113
33	mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes and Development, 2005, 19, 1581-1595.	5.9	201