
## Josefa Hernandez Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3280309/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phytomelatonin: an unexpected molecule with amazing performances in plants. Journal of Experimental Botany, 2022, 73, 5779-5800.                                                                                                     | 4.8 | 62        |
| 2  | Melatonin in Brassicaceae: Role in Postharvest and Interesting Phytochemicals. Molecules, 2022, 27, 1523.                                                                                                                            | 3.8 | 9         |
| 3  | Melatonin as a Possible Natural Safener in Crops. Plants, 2022, 11, 890.                                                                                                                                                             | 3.5 | 21        |
| 4  | Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biology, 2021, 23, 7-19.                                                                                                                | 3.8 | 99        |
| 5  | Melatonin against environmental plant stressors: a review. Current Protein and Peptide Science, 2021, 21, 413-429.                                                                                                                   | 1.4 | 31        |
| 6  | Melatonin as a plant biostimulant in crops and during postâ€harvest: a new approach is needed. Journal of the Science of Food and Agriculture, 2021, 101, 5297-5304.                                                                 | 3.5 | 39        |
| 7  | Melatonin and Carbohydrate Metabolism in Plant Cells. Plants, 2021, 10, 1917.                                                                                                                                                        | 3.5 | 35        |
| 8  | Regulatory Role of Melatonin in the Redox Network of Plants and Plant Hormone Relationship in Stress. Plant in Challenging Environments, 2021, , 235-272.                                                                            | 0.4 | 6         |
| 9  | A Phytomelatonin-Rich Extract Obtained from Selected Herbs with Application as Plant Growth Regulator. Plants, 2021, 10, 2143.                                                                                                       | 3.5 | 3         |
| 10 | Is Phytomelatonin a New Plant Hormone?. Agronomy, 2020, 10, 95.                                                                                                                                                                      | 3.0 | 102       |
| 11 | Development of a Phytomelatonin-Rich Extract from Cultured Plants with Excellent Biochemical and Functional Properties as an Alternative to Synthetic Melatonin. Antioxidants, 2020, 9, 158.                                         | 5.1 | 19        |
| 12 | Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction, 2020, 33, 77-87.                                                                                                                                           | 2.2 | 150       |
| 13 | A colorimetric method for the determination of different functional flavonoids using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and peroxidase. Preparative Biochemistry and Biotechnology, 2019, 49, 1033-1039. | 1.9 | 3         |
| 14 | Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. Agronomy, 2019, 9, 570.                                                       | 3.0 | 45        |
| 15 | Role of Melatonin to Enhance Phytoremediation Capacity. Applied Sciences (Switzerland), 2019, 9, 5293.                                                                                                                               | 2.5 | 43        |
| 16 | Melatonin: A New Plant Hormone and/or a Plant Master Regulator?. Trends in Plant Science, 2019, 24,<br>38-48.                                                                                                                        | 8.8 | 548       |
| 17 | Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin<br>Research, 2019, 2, 152-168.                                                                                                    | 1.1 | 118       |
| 18 | Melatonin and its relationship to plant hormones. Annals of Botany, 2018, 121, 195-207.                                                                                                                                              | 2.9 | 415       |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stability of biomarkers of oxidative stress in canine serum. Research in Veterinary Science, 2018, 121, 85-93.                                                                           | 1.9 | 15        |
| 20 | Phytomelatonin, natural melatonin from plants as a novel dietary supplement: Sources, activities and world market. Journal of Functional Foods, 2018, 48, 37-42.                         | 3.4 | 33        |
| 21 | Relationship of Melatonin and Salicylic Acid in Biotic/Abiotic Plant Stress Responses. Agronomy, 2018,<br>8, 33.                                                                         | 3.0 | 100       |
| 22 | The Potential of Phytomelatonin as a Nutraceutical. Molecules, 2018, 23, 238.                                                                                                            | 3.8 | 68        |
| 23 | Phytomelatonin versus synthetic melatonin in cancer treatments. Biomedical Research and Clinical Practice, 2018, 3, .                                                                    | 0.3 | 2         |
| 24 | Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease. Veterinary<br>Journal, 2017, 221, 56-61.                                                        | 1.7 | 29        |
| 25 | Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta<br>Physiologiae Plantarum, 2017, 39, 1.                                              | 2.1 | 104       |
| 26 | Analytical validation of an automated assay for ferric-reducing ability of plasma in dog serum. Journal of Veterinary Diagnostic Investigation, 2017, 29, 574-578.                       | 1.1 | 13        |
| 27 | Serum antioxidant capacity and oxidative damage in clinical and subclinical canine ehrlichiosis.<br>Research in Veterinary Science, 2017, 115, 301-306.                                  | 1.9 | 11        |
| 28 | Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC<br>Veterinary Research, 2016, 12, 166.                                                       | 1.9 | 200       |
| 29 | Changes in serum biomarkers of oxidative stress after treatment for canine leishmaniosis in sick dogs.<br>Comparative Immunology, Microbiology and Infectious Diseases, 2016, 49, 51-57. | 1.6 | 21        |
| 30 | Validation of three automated assays for total antioxidant capacity determination in canine serum samples. Journal of Veterinary Diagnostic Investigation, 2016, 28, 693-698.            | 1.1 | 27        |
| 31 | Validation of an automated assay for the measurement of cupric reducing antioxidant capacity in serum of dogs. BMC Veterinary Research, 2016, 12, 137.                                   | 1.9 | 24        |
| 32 | Phytomelatonin, an Interesting Tool for Agricultural Crops. Focus on Sciences, 2016, 2, 1-10.                                                                                            | 0.2 | 10        |
| 33 | Functions of melatonin in plants: a review. Journal of Pineal Research, 2015, 59, 133-150.                                                                                               | 7.4 | 644       |
| 34 | Phytomelatonin: Searching for Plants with High Levels for Use as a Natural Nutraceutical. Studies in<br>Natural Products Chemistry, 2015, 46, 519-545.                                   | 1.8 | 17        |
| 35 | Melatonin: plant growth regulator and/or biostimulator during stress?. Trends in Plant Science, 2014, 19, 789-797.                                                                       | 8.8 | 502       |
| 36 | Growth conditions determine different melatonin levels in <i><scp>L</scp>upinus albus<br/></i> <scp>L</scp> . Journal of Pineal Research, 2013, 55, 149-155.                             | 7.4 | 142       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Growth conditions influence the melatonin content of tomato plants. Food Chemistry, 2013, 138, 1212-1214.                                                                                                                        | 8.2  | 99        |
| 38 | Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochemical Analysis, 2009, 20, 14-18.                                                                               | 2.4  | 53        |
| 39 | Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 2009, 46, 58-63.                                                                              | 7.4  | 319       |
| 40 | Chemical stress by different agents affects the melatonin content of barley roots. Journal of Pineal Research, 2009, 46, 295-299.                                                                                                | 7.4  | 165       |
| 41 | Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regulation, 2008, 55, 29-34.                                                                                                                      | 3.4  | 96        |
| 42 | Distribution of Melatonin in Different Zones of Lupin and Barley Plants at Different Ages in the<br>Presence and Absence of Light. Journal of Agricultural and Food Chemistry, 2008, 56, 10567-10573.                            | 5.2  | 102       |
| 43 | Melatonin in Plants. Plant Signaling and Behavior, 2007, 2, 381-382.                                                                                                                                                             | 2.4  | 30        |
| 44 | Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus<br>albus L. Journal of Pineal Research, 2007, 42, 147-152.                                                                     | 7.4  | 247       |
| 45 | Inhibition of ACC oxidase activity by melatonin and indole-3-acetic acid in etiolated lupin hypocotyls. , 2007, , 101-103.                                                                                                       |      | 13        |
| 46 | Changes in hydrophilic antioxidant activity in Avena sativa and Triticum aestivum leaves of different age during de-etiolation and high-light treatment. Journal of Plant Research, 2006, 119, 321-327.                          | 2.4  | 9         |
| 47 | The Physiological Function of Melatonin in Plants. Plant Signaling and Behavior, 2006, 1, 89-95.                                                                                                                                 | 2.4  | 242       |
| 48 | Melatonin acts as a growthâ€stimulating compound in some monocot species. Journal of Pineal<br>Research, 2005, 39, 137-142.                                                                                                      | 7.4  | 278       |
| 49 | Melatonin: a growth-stimulating compound present in lupin tissues. Planta, 2004, 220, 140-144.                                                                                                                                   | 3.2  | 289       |
| 50 | Reactions of the Class II Peroxidases, Lignin Peroxidase andArthromyces ramosus Peroxidase, with<br>Hydrogen Peroxide. Journal of Biological Chemistry, 2002, 277, 26879-26885.                                                  | 3.4  | 71        |
| 51 | Complexes Between m-chloroperoxybenzoic Acid and Horseradish Peroxidase Compounds I and II:<br>Implications for the Kinetics of Enzyme Inactivation. Journal of Enzyme Inhibition and Medicinal<br>Chemistry, 2002, 17, 287-291. | 5.2  | 4         |
| 52 | A peroxidase isoenzyme secreted by turnip (Brassica napus) hairy-root cultures: inactivation by<br>hydrogen peroxide and application in diagnostic kits. Biotechnology and Applied Biochemistry, 2002,<br>35, 1.                 | 3.1  | 76        |
| 53 | Mechanism of Reaction of Hydrogen Peroxide with Horseradish Peroxidase:Â Identification of<br>Intermediates in the Catalytic Cycle. Journal of the American Chemical Society, 2001, 123, 11838-11847.                            | 13.7 | 281       |
| 54 | Catalase-like Oxygen Production by Horseradish Peroxidase Must Predominantly Be an<br>Enzyme-Catalyzed Reaction. Archives of Biochemistry and Biophysics, 2001, 392, 295-302.                                                    | 3.0  | 56        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2.<br>Biochemical Journal, 2001, 354, 107-114.                                                                                                                               | 3.7 | 149       |
| 56 | Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2.<br>Biochemical Journal, 2001, 354, 107.                                                                                                                                   | 3.7 | 86        |
| 57 | The inactivation of horseradish peroxidase isoenzyme AZ by hydrogen peroxide: an example of partial resistance due to the formation of a stable enzyme intermediate. Journal of Biological Inorganic Chemistry, 2001, 6, 504-516.                                        | 2.6 | 45        |
| 58 | Characterization of isoperoxidase-B2 inactivation in etiolated Lupinus albus hypocotyls. BBA -<br>Proteins and Proteomics, 2000, 1478, 78-88.                                                                                                                            | 2.1 | 9         |
| 59 | An end-point method for estimation of the total antioxidant activity in plant material. Phytochemical Analysis, 1998, 9, 196-202.                                                                                                                                        | 2.4 | 296       |
| 60 | The Inactivation and Catalytic Pathways of Horseradish Peroxidase with m-Chloroperoxybenzoic Acid.<br>Journal of Biological Chemistry, 1997, 272, 5469-5476.                                                                                                             | 3.4 | 75        |
| 61 | A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C. Biotechnology and Bioengineering, 1996, 50, 655-662.                                                      | 3.3 | 83        |
| 62 | Inhibition byl-Ascorbic Acid and Other Antioxidants of the<br>2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic Acid) Oxidation Catalyzed by Peroxidase: A New Approach<br>for Determining Total Antioxidant Status of Foods. Analytical Biochemistry, 1996, 236, 255-261. | 2.4 | 162       |
| 63 | A Comparative Study of the Inactivation of Wild-Type, Recombinant and Two Mutant Horseradish<br>Peroxidase Isoenzymes C by Hydrogen Peroxide and m-chloroperoxybenzoic Acid. FEBS Journal, 1995,<br>234, 506-512.                                                        | 0.2 | 68        |
| 64 | The inactivation of horseradish peroxidase by m-chloroperoxybenzoic acid, a xenobiotic hydroperoxide. Journal of Molecular Catalysis A, 1995, 104, 179-191.                                                                                                              | 4.8 | 9         |
| 65 | Phytomelatonin content in Valeriana officinalis L. and some related phytotherapeutic supplements. , 0,                                                                                                                                                                   |     | 2         |