David D Ackerly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3280239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Range dynamics mediated by compensatory life stage responses to experimental climate manipulations. Ecology Letters, 2021, 24, 772-780.	6.4	9
2	Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
3	Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
4	PARTITIONING GENETIC AND ENVIRONMENTAL COMPONENTS OF PHENOLOGICAL VARIATION IN QUERCUS DOUGLASII (FAGACEAE). Madro \tilde{A} ±0, 2021, 68, .	0.4	7
5	LATE PLANTING SHORTENS THE FLOWERING PERIOD AND REDUCES FECUNDITY IN LASTHENIA CALIFORNICA. Madro $\tilde{A}\pm o,2021,68,.$	0.4	2
6	Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. Global Change Biology, 2020, 26, 1055-1067.	9.5	51
7	Species Selection Regime and Phylogenetic Tree Shape. Systematic Biology, 2020, 69, 774-794.	5.6	9
8	Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nature Climate Change, 2020, 10, 868-875.	18.8	28
9	Topographic heterogeneity lengthens the duration of pollinator resources. Ecology and Evolution, 2020, 10, 9301-9312.	1.9	10
10	Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct, 2020, 4, e00252.	1.9	26
11	Climateâ€change refugia: biodiversity in the slow lane. Frontiers in Ecology and the Environment, 2020, 18, 228-234.	4.0	156
12	Topoclimates, refugia, and biotic responses to climate change. Frontiers in Ecology and the Environment, 2020, 18, 288-297.	4.0	54
13	Plant hydraulic traits reveal islands as refugia from worsening drought. , 2020, 8, coz115.		12
14	Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Global Change Biology, 2020, 26, 3091-3107.	9.5	35
15	Multiple axes of ecological vulnerability to climate change. Global Change Biology, 2020, 26, 2798-2813.	9.5	40
16	Mismatch managed? Phenological phase extension as a strategy to manage phenological asynchrony in plant–animal mutualisms. Restoration Ecology, 2020, 28, 498-505.	2.9	17
17	Phylogenetic trajectories during secondary succession in a Neotropical dry forest: Assembly processes, ENSO effects and the role of legumes. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 43, 125513.	2.7	10
18	Natural selection maintains species despite frequent hybridization in the desert shrub <i>Encelia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33373-33383.	7.1	21

#	Article	IF	CITATIONS
19	No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak. New Phytologist, 2019, 223, 1296-1306.	7.3	52
20	The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environmental Change, 2019, 56, 41-55.	7.8	74
21	Increases in thermophilus plants in an arid alpine community in response to experimental warming. Arctic, Antarctic, and Alpine Research, 2019, 51, 201-214.	1.1	8
22	Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170397.	4.0	48
23	Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytologist, 2019, 222, 193-205.	7.3	45
24	Beyond isohydricity: The role of environmental variability in determining plant drought responses. Plant, Cell and Environment, 2019, 42, 1104-1111.	5.7	47
25	Compound fireâ€drought regimes promote ecosystem transitions in Mediterranean ecosystems. Journal of Ecology, 2019, 107, 1187-1198.	4.0	38
26	Best practices for reporting climate data in ecology. Nature Climate Change, 2018, 8, 92-94.	18.8	10
27	Avoided land use conversions and carbon loss from conservation purchases in California. Journal of Land Use Science, 2018, 13, 391-413.	2.2	1
28	The ecohydrological context of drought and classification of plant responses. Ecology Letters, 2018, 21, 1723-1736.	6.4	38
29	Low Vulnerability to Xylem Embolism in Leaves and Stems of North American Oaks. Plant Physiology, 2018, 177, 1066-1077.	4.8	117
30	New concepts, models, and assessments of climate-wise connectivity. Environmental Research Letters, 2018, 13, 073002.	5.2	77
31	The seasonal climate niche predicts phenology and distribution of an ephemeral annual plant, <i>Mollugo verticillata</i> . Journal of Ecology, 2017, 105, 1323-1334.	4.0	31
32	Reconciling seasonal hydraulic risk and plant water use through probabilistic soil–plant dynamics. Global Change Biology, 2017, 23, 3758-3769.	9.5	35
33	Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 2017, 355, .	12.6	260
34	Species richness and endemism in the native flora of California. American Journal of Botany, 2017, 104, 487-501.	1.7	50
35	Hydrologic refugia, plants, and climate change. Global Change Biology, 2017, 23, 2941-2961.	9.5	257
36	Cumulative effects of fire and drought in Mediterranean ecosystems. Ecosphere, 2017, 8, e01906.	2.2	35

#	Article	IF	CITATIONS
37	Spatial phylogenetics of the native California flora. BMC Biology, 2017, 15, 96.	3.8	104
38	Climate Change Refugia, Fire Ecology and Management. Forests, 2016, 7, 77.	2.1	33
39	Evolutionary Legacy Effects on Ecosystems: Biogeographic Origins, Plant Traits, and Implications for Management in the Era of Global Change. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 433-462.	8.3	73
40	Effects of topoclimatic complexity on the composition of woody plant communities. AoB PLANTS, 2016, 8, plw049.	2.3	15
41	The Incomplete Filling of the Nâ€dimensional Hypervolume. Bulletin of the Ecological Society of America, 2015, 96, 407-408.	0.2	1
42	The theory behind, and the challenges of, conserving nature's stage in a time of rapid change. Conservation Biology, 2015, 29, 618-629.	4.7	188
43	The joint evolution of traits and habitat: ontogenetic shifts in leaf morphology and wetland specialization in Lasthenia. New Phytologist, 2015, 208, 949-959.	7.3	14
44	Carbon assimilation and habitat segregation inÂresurrection plants: a comparison between desiccation― and nonâ€desiccationâ€ŧolerant species of Neotropical Velloziaceae (Pandanales). Functional Ecology, 2015, 29, 1499-1512.	3.6	42
45	A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk?. PLoS ONE, 2015, 10, e0130629.	2.5	37
46	Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1458-1463.	7.1	199
47	Adapting California's Ecosystems to a Changing Climate. BioScience, 2015, 65, 247-262.	4.9	22
48	Targeting climate diversity in conservation planning to build resilience to climate change. Ecosphere, 2015, 6, 1-20.	2.2	27
49	A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grassland–shrubland–woodland systems. Environmental Research Letters, 2015, 10, 034018.	5.2	24
50	Topographic, latitudinal and climatic distribution of <i>Pinus coulteri</i> : geographic range limits are not at the edge of the climate envelope. Ecography, 2015, 38, 590-601.	4.5	35
51	Assembly of Plant Communities. , 2015, , 1-18.		Ο
52	Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology, 2014, 20, 2841-2855.	9.5	154
53	Assembly of Plant Communities. , 2014, , 67-88.		67
54	Ecological release exposes genetically based niche variation. Ecology Letters, 2014, 17, 1149-1157.	6.4	26

#	Article	IF	CITATIONS
55	Are leaf functional traits â€`invariant' with plant size and what is â€`invariance' anyway?. Functional Ecology, 2014, 28, 1330-1343.	3.6	46
56	Filtering across Spatial Scales: Phylogeny, Biogeography and Community Structure in Bumble Bees. PLoS ONE, 2013, 8, e60446.	2.5	34
57	The Assembly of Plant Communities. , 2013, , 1-19.		3
58	A broader model for C ₄ photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3304-3311.	2.6	96
59	Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils. Ecosphere, 2012, 3, art70-art70.	2.2	5
60	Niche evolution across spatial scales: climate and habitat specialization in CaliforniaLasthenia(Asteraceae). Ecology, 2012, 93, S151-S166.	3.2	37
61	Defoliation and gender effects on fitness components in three congeneric and sympatric understorey palms. Journal of Ecology, 2012, 100, 1544-1556.	4.0	14
62	A Comparative Method for Both Discrete and Continuous Characters Using the Threshold Model. American Naturalist, 2012, 179, 145-156.	2.1	181
63	Integrating ecology and phylogenetics: the footprint of history in modernâ€day communities ¹ . Ecology, 2012, 93, S1.	3.2	29
64	Endemic plant communities on special soils: early victims or hardy survivors of climate change?. Journal of Ecology, 2012, 100, 1122-1130.	4.0	85
65	Resilience to chronic defoliation in a dioecious understorey tropical rain forest palm. Journal of Ecology, 2012, 100, 1245-1256.	4.0	23
66	Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. Plant Ecology and Diversity, 2011, 4, 179-188.	2.4	38
67	Effect of local community phylogenetic structure on pollen limitation in an obligately insectâ€pollinated plant. American Journal of Botany, 2011, 98, 283-289.	1.7	37
68	Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecology and Biogeography, 2011, 20, 755-765.	5.8	106
69	Linking leaf transcript levels to whole plant analyses provides mechanistic insights to the impact of warming and altered water availability in an annual grass. Global Change Biology, 2011, 17, 1577-1594.	9.5	16
70	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
71	Analysis of Leaf and Root Transcriptomes of Soil-Grown Avena barbata Plants. Plant and Cell Physiology, 2011, 52, 317-332.	3.1	34
72	Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytologist, 2010, 188, 565-575.	7.3	127

#	Article	IF	CITATIONS
73	Range size, taxon age and hotspots of neoendemism in the California flora. Diversity and Distributions, 2010, 16, 403-413.	4.1	91
74	The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 2010, 16, 476-487.	4.1	490
75	A link between plant traits and abundance: evidence from coastal California woody plants. Journal of Ecology, 2010, 98, 814-821.	4.0	129
76	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	6.4	1,387
77	Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26, 1463-1464.	4.1	4,517
78	Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2131-2138.	2.6	219
79	Post-fire regeneration strategies and flammability traits of California chaparral shrubs. International Journal of Wildland Fire, 2010, 19, 984.	2.4	22
80	Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 2010, 80, 401-422.	5.4	501
81	Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 2010, 97, 207-215.	1.7	355
82	Response to Comment on "Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest― Science, 2009, 324, 1015-1015.	12.6	11
83	Biogeography, changing climates, and niche evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19631-19636.	7.1	69
84	Soil drying and nitrogen availability modulate carbon and water exchange over a range of annual precipitation totals and grassland vegetation types. Global Change Biology, 2009, 15, 3018-3030.	9.5	50
85	Evolution, origin and age of lineages in the Californian and Mediterranean floras. Journal of Biogeography, 2009, 36, 1221-1233.	3.0	85
86	Defoliation and ENSO effects on vital rates of an understorey tropical rain forest palm. Journal of Ecology, 2009, 97, 1050-1061.	4.0	76
87	The velocity of climate change. Nature, 2009, 462, 1052-1055.	27.8	1,930
88	Plant responsiveness to variation in precipitation and nitrogen is consistent across the compositional diversity of a California annual grassland. Journal of Vegetation Science, 2009, 20, 860-870.	2.2	30
89	Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 2009, 79, 109-126.	5.4	940
90	Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19699-19706.	7.1	313

#	Article	IF	CITATIONS
91	Traits, Habitats, and Clades: Identifying Traits of Potential Importance to Environmental Filtering. American Naturalist, 2009, 174, E1-E22.	2.1	45
92	Introduction to a <i>Virtual Special Issue</i> on plant ecological strategy axes in leaf and wood traits. New Phytologist, 2008, 179, 901-903.	7.3	15
93	Climate Change and the Future of California's Endemic Flora. PLoS ONE, 2008, 3, e2502.	2.5	344
94	Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science, 2008, 322, 580-582.	12.6	949
95	Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology and Evolution, 2008, 23, 123-130.	8.7	333
96	Why are evergreen leaves so contrary about shade?. Trends in Ecology and Evolution, 2008, 23, 299-303.	8.7	193
97	ARE FUNCTIONAL TRAITS GOOD PREDICTORS OF DEMOGRAPHIC RATES? EVIDENCE FROM FIVE NEOTROPICAL FORESTS. Ecology, 2008, 89, 1908-1920.	3.2	572
98	Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 2008, 24, 2098-2100.	4.1	1,502
99	Fakhri A. Bazzaz 1933–2008. Bulletin of the Ecological Society of America, 2008, 89, 92-94.	0.2	2
100	Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 2007, 5, 145-152.	4.0	401
101	Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. American Naturalist, 2007, 170, 271-283.	2.1	625
102	The mode and tempo of genome size evolution in eukaryotes. Genome Research, 2007, 17, 594-601.	5.5	140
103	Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany, 2007, 99, 1003-1015.	2.9	317
104	In support of observational studies. Frontiers in Ecology and the Environment, 2007, 5, 294-295.	4.0	0
105	A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 2007, 10, 135-145.	6.4	638
106	Global patterns in seed size. Global Ecology and Biogeography, 2007, 16, 109-116.	5.8	334
107	Gap-dependence in mangrove life-history strategies: a consideration of the entire life cycle and patch dynamics. Journal of Ecology, 2007, 95, 1222-1233.	4.0	25
108	Evolution of hydraulic traits in closely related species pairs from mediterranean and nonmediterranean environments of North America. New Phytologist, 2007, 176, 718-726.	7.3	70

#	Article	IF	CITATIONS
109	NICHE EVOLUTION AND ADAPTIVE RADIATION: TESTING THE ORDER OF TRAIT DIVERGENCE. Ecology, 2006, 87, S50-S61.	3.2	241
110	A TRAIT-BASED TEST FOR HABITAT FILTERING: CONVEX HULL VOLUME. Ecology, 2006, 87, 1465-1471.	3.2	963
111	Sustainability of Mangrove Harvesting: How do Harvesters' Perceptions Differ from Ecological Analysis?. Ecology and Society, 2006, 11, .	2.3	45
112	Mangrove Seedling Net Photosynthesis, Growth, and Survivorship are Interactively Affected by Salinity and Light1. Biotropica, 2006, 38, 606-616.	1.6	50
113	The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. Journal of Ecology, 2006, 94, 522-536.	4.0	67
114	Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum, 2006, 127, 353-359.	5.2	86
115	Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia, 2006, 150, 545-556.	2.0	84
116	Global patterns in seed size. Global Ecology and Biogeography, 2006, .	5.8	16
117	A TRAIT-BASED TEST FOR HABITAT FILTERING: CONVEX HULL VOLUME. , 2006, 87, 1465.		6
118	Optimal reproductive allocation in annuals and an informational constraint on plasticity. New Phytologist, 2005, 166, 159-172.	7.3	27
119	Limiting similarity and functional diversity along environmental gradients. Ecology Letters, 2005, 8, 272-281.	6.4	78
120	Response to Comment on "A Brief History of Seed Size". Science, 2005, 310, 783.2-783.	12.6	19
121	Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10540-10544.	7.1	280
122	Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouting <i>Ceanothus</i> (Rhamnaceae). American Journal of Botany, 2005, 92, 404-410.	1.7	83
123	SPECIES AND FUNCTIONAL DIVERSITY OF NATIVE AND HUMANâ€DOMINATED PLANT COMMUNITIES. Ecology, 2005, 86, 2365-2372.	3.2	111
124	A Brief History of Seed Size. Science, 2005, 307, 576-580.	12.6	513
125	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	27.8	6,489
126	Evolutionary Diversification of Continuous Traits: Phylogenetic Tests and Application to Seed Size in the California Flora. Evolutionary Ecology, 2004, 18, 249-272.	1.2	26

#	Article	IF	CITATIONS
127	Adaptation, Niche Conservatism, and Convergence: Comparative Studies of Leaf Evolution in the California Chaparral. American Naturalist, 2004, 163, 654-671.	2.1	285
128	FUNCTIONAL STRATEGIES OF CHAPARRAL SHRUBS IN RELATION TO SEASONAL WATER DEFICIT AND DISTURBANCE. Ecological Monographs, 2004, 74, 25-44.	5.4	431
129	Phylogenetic Overdispersion in Floridian Oak Communities. American Naturalist, 2004, 163, 823-843.	2.1	738
130	Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytologist, 2003, 160, 337-347.	7.3	125
131	Canopy gaps to climate change – extreme events, ecology and evolution. New Phytologist, 2003, 160, 2-4.	7.3	27
132	DEFOLIATION AND GROWTH IN AN UNDERSTORY PALM: QUANTIFYING THE CONTRIBUTIONS OF COMPENSATORY RESPONSES. Ecology, 2003, 84, 2905-2918.	3.2	86
133	Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany, 2003, 90, 1502-1512.	1.7	74
134	Small Heat Shock Protein Responses of a Closely Related Pair of Desert and CoastalEncelia. International Journal of Plant Sciences, 2003, 164, 53-60.	1.3	13
135	Phylogenies and Community Ecology. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 475-505.	6.7	3,473
136	An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. Oecologia, 2002, 130, 505-514.	2.0	86
137	Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 2002, 130, 449-457.	2.0	432
138	Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters, 2002, 5, 66-76.	6.4	189
139	Correlated evolution of chloroplast heat shock protein expression in closely related plant species. American Journal of Botany, 2001, 88, 411-418.	1.7	44
140	Canopy-level photosynthetic compensation after defoliation in a tropical understorey palm. Functional Ecology, 2001, 15, 252-262.	3.6	81
141	Flammability and serotiny as strategies: correlated evolution in pines. Oikos, 2001, 94, 326-336.	2.7	279
142	A new method of growth analysis for plants that experience periodic losses of leaf mass. Functional Ecology, 2001, 15, 804-811.	3.6	56
143	TAXON SAMPLING, CORRELATED EVOLUTION, AND INDEPENDENT CONTRASTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1480-1492.	2.3	196
144	Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora. Journal of Vegetation Science, 2000, 11, 213-224.	2.2	52

#	Article	IF	CITATIONS
145	TAXON SAMPLING, CORRELATED EVOLUTION, AND INDEPENDENT CONTRASTS. Evolution; International Journal of Organic Evolution, 2000, 54, 1480.	2.3	10
146	The Evolution of Plant Ecophysiological Traits: Recent Advances and Future Directions. BioScience, 2000, 50, 979.	4.9	387
147	Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 1999, 86, 1272-1281.	1.7	262
148	Significance of leaf longevity in plants. Plant Species Biology, 1999, 14, 39-45.	1.0	95
149	Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models. Oecologia, 1999, 119, 300-310.	2.0	145
150	Mangrove Biodiversity and Ecosystem Function. Global Ecology and Biogeography Letters, 1998, 7, 3.	0.6	106
151	Leaf Size, Sapling Allometry, and Corner's Rules: Phylogeny and Correlated Evolution in Maples (Acer). American Naturalist, 1998, 152, 767-791.	2.1	312
152	Phylogenetic uncertainties and sensitivity analyses in comparative biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 1241-1249.	4.0	109
153	Effects of CO2 elevation on canopy development in the stands of two co-occurring annuals. Oecologia, 1996, 108, 215-223.	2.0	35
154	Canopy Structure and Dynamics: Integration of Growth Processes in Tropical Pioneer Trees. , 1996, , 619-658.		72
155	Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia, 1995, 101, 289-298.	2.0	177
156	Plant growth and reproduction along CO2 gradients: non-linear responses and implications for community change. Global Change Biology, 1995, 1, 199-207.	9.5	96
157	L eaf position, light levels, and nitrogen allocation in five species of rain forest pioneer trees. American Journal of Botany, 1995, 82, 1137-1143.	1.7	23
158	Leaf Position, Light Levels, and Nitrogen Allocation in Five Species of Rain Forest Pioneer Trees. American Journal of Botany, 1995, 82, 1137.	1.7	12
159	Phylogeny and Ecology Reconsidered. Journal of Ecology, 1995, 83, 730.	4.0	40
160	Seedling Crown Orientation and Interception of Diffuse Radiation in Tropical Forest Gaps. Ecology, 1995, 76, 1134-1146.	3.2	121
161	Interpreting phenotypic variation in plants. Trends in Ecology and Evolution, 1994, 9, 187-191.	8.7	556
162	CO_2 and Temperature Effects on Leaf Area Production in Two Annual Plant Species. Ecology, 1992, 73, 1260-1269.	3.2	62

#	Article	IF	CITATIONS
163	CO 2 Enrichment and Dependence of Reproduction on Density in an Annual Plant and a Simulation of its Population Dynamics. Journal of Ecology, 1992, 80, 643.	4.0	50
164	Light, leaf age, and leaf nitrogen concentration in a tropical vine. Oecologia, 1992, 89, 596-600.	2.0	70
165	Tree densities and sex ratios in breeding populations of dioecious Central Amazonian Myristicaceae. Journal of Tropical Ecology, 1990, 6, 239-248.	1.1	33
166	Size-dependent variation of gender in high density stands of the monoecious annual, Ambrosia artemisiifolia (Asteraceae). Oecologia, 1990, 82, 474-477.	2.0	51
167	The Forest-Cerrado Transition Zone in Southern Amazonia: Results of the 1985 Projeto Flora Amazonica Expedition to Mato Grosso. Brittonia, 1989, 41, 113.	0.2	50