Carey Lambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3278667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nature Communications, 2022, 13, 1509.	12.8	12
2	Production of 3′,3′-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, BdO367, regulates exit from prey by gliding motility. PLoS Genetics, 2022, 18, e1010164.	3.5	11
3	A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nature Communications, 2020, 11, 4817.	12.8	35
4	Dual Predation by Bacteriophage and Bdellovibrio bacteriovorus Can Eradicate Escherichia coli Prey in Situations where Single Predation Cannot. Journal of Bacteriology, 2020, 202, .	2.2	29
5	A novel method to determine antibiotic sensitivity in Bdellovibrio bacteriovorus reveals a DHFR-dependent natural trimethoprim resistance. Scientific Reports, 2020, 10, 5315.	3.3	12
6	DivIVA Controls Progeny Morphology and Diverse ParA Proteins Regulate Cell Division or Gliding Motility in Bdellovibrio bacteriovorus. Frontiers in Microbiology, 2020, 11, 542.	3.5	15
7	Nucleotide signaling pathway convergence in a cAMPâ€sensing bacterial câ€diâ€GMP phosphodiesterase. EMBO Journal, 2019, 38, e100772.	7.8	11
8	Dynamics of Chromosome Replication and Its Relationship to Predatory Attack Lifestyles in Bdellovibrio bacteriovorus. Applied and Environmental Microbiology, 2019, 85, .	3.1	19
9	Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus. Scientific Reports, 2019, 9, 5007.	3.3	6
10	Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nature Microbiology, 2017, 2, 1648-1657.	13.3	103
11	Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Scientific Reports, 2016, 6, 26010.	3.3	39
12	Injections of Predatory Bacteria Work Alongside Host Immune Cells to Treat Shigella Infection in Zebrafish Larvae. Current Biology, 2016, 26, 3343-3351.	3.9	131
13	Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator–prey genotypes. Environmental Microbiology Reports, 2015, 7, 812-823.	2.4	47
14	Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nature Communications, 2015, 6, 8884.	12.8	37
15	Nucleases in <i>Bdellovibrio bacteriovorus</i> contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. FEMS Microbiology Letters, 2013, 340, 109-116.	1.8	31
16	Activity of Bdellovibrio Hit Locus Proteins, Bd0108 and Bd0109, Links Type IVa Pilus Extrusion/Retraction Status to Prey-Independent Growth Signalling. PLoS ONE, 2013, 8, e79759.	2.5	40
17	Discrete Cyclic di-GMP-Dependent Control of Bacterial Predation versus Axenic Growth in Bdellovibrio bacteriovorus. PLoS Pathogens, 2012, 8, e1002493.	4.7	80
18	Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics, 2012, 13, 670.	2.8	46

CAREY LAMBERT

#	Article	IF	CITATIONS
19	Mutagenesis of RpoE-like sigma factor genes in Bdellovibrio reveals differential control of groEL and two groES genes. BMC Microbiology, 2012, 12, 99.	3.3	6
20	The Structure of an Unconventional HD-GYP Protein from <i>Bdellovibrio</i> Reveals the Roles of Conserved Residues in this Class of Cyclic-di-GMP Phosphodiesterases. MBio, 2011, 2, .	4.1	73
21	Predatory Bdellovibrio Bacteria Use Cliding Motility To Scout for Prey on Surfaces. Journal of Bacteriology, 2011, 193, 3139-3141.	2.2	41
22	Effects of Orally Administered Bdellovibrio bacteriovorus on the Well-Being and Salmonella Colonization of Young Chicks. Applied and Environmental Microbiology, 2011, 77, 5794-5803.	3.1	150
23	A Transcriptional "Scream―Early Response of E. coli Prey to Predatory Invasion by Bdellovibrio. Current Microbiology, 2010, 60, 419-427.	2.2	20
24	The First Bite— Profiling the Predatosome in the Bacterial Pathogen Bdellovibrio. PLoS ONE, 2010, 5, e8599.	2.5	82
25	Manipulating Each MreB of <i>Bdellovibrio bacteriovorus</i> Gives Diverse Morphological and Predatory Phenotypes. Journal of Bacteriology, 2010, 192, 1299-1311.	2.2	40
26	Roles of Multiple Flagellins in Flagellar Formation and Flagellar Growth Post Bdelloplast Lysis in Bdellovibrio bacteriovorus. Journal of Molecular Biology, 2009, 394, 1011-1021.	4.2	32
27	Laboratory Maintenance of <i>Bdellovibrio</i> . Current Protocols in Microbiology, 2008, 9, Unit 7B.2.	6.5	45
28	A Predatory Patchwork: Membrane and Surface Structures of Bdellovibrio bacteriovorus. Advances in Microbial Physiology, 2008, 54, 313-361.	2.4	30
29	Predation by Bdellovibrio bacteriovorus HD100 Requires Type IV Pili. Journal of Bacteriology, 2007, 189, 4850-4859.	2.2	111
30	Predation by <i>Bdellovibrio bacteriovorus</i> HD100 Requires Type IV Pili. Journal of Bacteriology, 2007, 189, 6507-6507.	2.2	0
31	Bdellovibrio: growth and development during the predatory cycle. Current Opinion in Microbiology, 2006, 9, 639-644.	5.1	54
32	Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Molecular Microbiology, 2006, 60, 274-286.	2.5	125
33	Bdellovibrio as therapeutic agents: a predatory renaissance?. Nature Reviews Microbiology, 2004, 2, 669-675.	28.6	159
34	A Predator Unmasked: Life Cycle of Bdellovibrio bacteriovorus from a Genomic Perspective. Science, 2004, 303, 689-692.	12.6	331
35	A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environmental Microbiology, 2003, 5, 127-132.	3.8	98