
Gabriele S Kaminski Schierle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3278094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. Science Advances, 2022, 8, eabl4895.	10.3	53
2	Label-Free Characterization of Amyloids and Alpha-Synuclein Polymorphs by Exploiting Their Intrinsic Fluorescence Property. Analytical Chemistry, 2022, 94, 5367-5374.	6.5	11
3	Intracellular Aβ42 Aggregation Leads to Cellular Thermogenesis. Journal of the American Chemical Society, 2022, 144, 10034-10041.	13.7	16
4	Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nature Communications, 2022, 13, .	12.8	16
5	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	47.7	82
6	Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Progress in Neurobiology, 2021, 198, 101907.	5.7	14
7	Intracellular Thermometry at the Micro…Nanoscale and its Potential Application to Study Protein Aggregation Related to Neurodegenerative Diseases. ChemBioChem, 2021, 22, 1546-1558.	2.6	8
8	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	3.7	12
9	Sea Cucumber-Derived Peptides Alleviate Oxidative Stress in Neuroblastoma Cells and Improve Survival in C. elegans Exposed to Neurotoxic Paraquat. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	4.0	17
10	Short hydrogen bonds enhance nonaromatic protein-related fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
11	Microelectrode Arrays for Simultaneous Electrophysiology and Advanced Optical Microscopy. Advanced Science, 2021, 8, 2004434.	11.2	32
12	Synaptic tau: A pathological or physiological phenomenon?. Acta Neuropathologica Communications, 2021, 9, 149.	5.2	30
13	Graphene for Biosensing Applications in Point-of-Care Testing. Trends in Biotechnology, 2021, 39, 1065-1077.	9.3	54
14	OptoGenie: an open-source device for the optogenetic stimulation of cells. Journal of Open Hardware, 2021, 5, .	0.5	0
15	Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. Journal of Molecular Cell Biology, 2021, 13, 282-294.	3.3	65
16	An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Frontiers in Molecular Neuroscience, 2021, 14, 721749.	2.9	6
17	Biofunctionalised bacterial cellulose scaffold supports the patterning and expansion of human embryonic stem cell-derived dopaminergic progenitor cells. Stem Cell Research and Therapy, 2021, 12, 574.	5.5	3
18	Advanced fluorescence imaging of in situ protein aggregation. Physical Biology, 2020, 17, 021001.	1.8	16

#	Article	IF	CITATIONS
19	Fast Purification of Recombinant Monomeric Amyloid-β from <i>E. coli</i> and Amyloid-β-mCherry Aggregates from Mammalian Cells. ACS Chemical Neuroscience, 2020, 11, 3204-3213.	3.5	4
20	Purification of Recombinant α-synuclein: A Comparison of Commonly Used Protocols. Biochemistry, 2020, 59, 4563-4572.	2.5	11
21	The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Science Advances, 2020, 6, .	10.3	58
22	Intramitochondrial proteostasis is directly coupled to α-synuclein and amyloid β1-42 pathologies. Journal of Biological Chemistry, 2020, 295, 10138-10152.	3.4	22
23	Extent of N-terminus exposure of monomeric alpha-synuclein determines its aggregation propensity. Nature Communications, 2020, 11, 2820.	12.8	99
24	Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria. Journal of the American Chemical Society, 2020, 142, 6661-6674.	13.7	103
25	A waveguide imaging platform for liveâ€cell TIRF imaging of neurons over large fields of view. Journal of Biophotonics, 2020, 13, e201960222.	2.3	13
26	The role of water in amyloid aggregation kinetics. Current Opinion in Structural Biology, 2019, 58, 115-123.	5.7	27
27	Mitochondrial degradation of amyloidogenic proteins — A new perspective for neurodegenerative diseases. Progress in Neurobiology, 2019, 181, 101660.	5.7	14
28	Observation of high-temperature macromolecular confinement in lyophilised protein formulations using terahertz spectroscopy. International Journal of Pharmaceutics: X, 2019, 1, 100022.	1.6	11
29	Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging <i>Caenorhabditis elegans</i> . ACS Chemical Biology, 2019, 14, 1628-1636.	3.4	30
30	Terahertz Spectroscopy: An Investigation of the Structural Dynamics of Freeze-Dried Poly Lactic-co-glycolic Acid Microspheres. Pharmaceutics, 2019, 11, 291.	4.5	8
31	Low energy optical excitations as an indicator of structural changes initiated at the termini of amyloid proteins. Physical Chemistry Chemical Physics, 2019, 21, 23931-23942.	2.8	17
32	Live-cell super-resolution microscopy reveals a primary role for diffusion in polyglutamine-driven aggresome assembly. Journal of Biological Chemistry, 2019, 294, 257-268.	3.4	27
33	Structural progression of amyloid-Î ² Arctic mutant aggregation in cells revealed by multiparametric imaging. Journal of Biological Chemistry, 2019, 294, 1478-1487.	3.4	31
34	The Cellular Environment Affects Monomeric α-Synuclein Structure. Trends in Biochemical Sciences, 2019, 44, 453-466.	7.5	58
35	Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. ELife, 2019, 8, .	6.0	51
36	Isolation and Imaging of His- and RFP-tagged Amyloid-like Proteins from Caenorhabditis elegans by TEM and SIM. Bio-protocol, 2019, 9, e3408.	0.4	0

#	Article	IF	CITATIONS
37	FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-Ï€ Interactions. Cell, 2018, 173, 720-734.e15.	28.9	662
38	C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nature Communications, 2018, 9, 712.	12.8	223
39	Opal-like Multicolor Appearance of Self-Assembled Photonic Array. ACS Applied Materials & Interfaces, 2018, 10, 20783-20789.	8.0	17
40	An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures. Frontiers in Cellular Neuroscience, 2018, 12, 44.	3.7	8
41	Different Structural Conformers of Monomeric α-Synuclein Identified after Lyophilizing and Freezing. Analytical Chemistry, 2018, 90, 6975-6983.	6.5	27
42	A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Physical Chemistry Chemical Physics, 2017, 19, 4030-4040.	2.8	41
43	Super-resolution imaging of alpha-synuclein polymorphisms and their potential role in neurodegeneration. Integrative Biology (United Kingdom), 2017, 9, 206-210.	1.3	7
44	α-Synuclein – Regulator of Exocytosis, Endocytosis, or Both?. Trends in Cell Biology, 2017, 27, 468-479.	7.9	110
45	Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells. Nano Letters, 2017, 17, 143-149.	9.1	55
46	Imaging Aβ(1–42) fibril elongation reveals strongly polarised growth and growth incompetent states. Physical Chemistry Chemical Physics, 2017, 19, 27987-27996.	2.8	57
47	Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and labelâ€free nanoscopy. Microscopy Research and Technique, 2016, 79, 677-683.	2.2	13
48	Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nature Communications, 2016, 7, 12563.	12.8	203
49	B6â€Super-resolution fluorescence imaging of the seeding and polymerizatoin of the huntingtin exon 1 protein. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A11.1-A11.	1.9	0
50	Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease. Neurophotonics, 2016, 3, 041807.	3.3	36
51	Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures. Journal of the American Chemical Society, 2016, 138, 3046-3057.	13.7	182
52	Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3815-3819.	7.1	63
53	CYK4 Promotes Antiparallel Microtubule Bundling by Optimizing MKLP1 Neck Conformation. PLoS Biology, 2015, 13, e1002121.	5.6	37
54	ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron, 2015, 88, 678-690.	8.1	716

#	Article	IF	CITATIONS
55	Extracellular Monomeric Tau Protein Is Sufficient to Initiate the Spread of Tau Protein Pathology. Journal of Biological Chemistry, 2014, 289, 956-967.	3.4	153
56	Direct Observation of Heterogeneous Amyloid Fibril Growth Kinetics via Two-Color Super-Resolution Microscopy. Nano Letters, 2014, 14, 339-345.	9.1	159
57	Structure-Specific Intrinsic Fluorescence of Protein Amyloids Used to Study their Kinetics of Aggregation. , 2014, , 147-155.		24
58	Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid. Brain, 2014, 137, 2909-2915.	7.6	61
59	Direct Observations of Amyloid β Self-Assembly in Live Cells Provide Insights into Differences in the Kinetics of Aβ(1–40) and Aβ(1–42) Aggregation. Chemistry and Biology, 2014, 21, 732-742.	6.0	111
60	Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst, The, 2013, 138, 2156.	3.5	182
61	A Labelâ€Free, Quantitative Assay of Amyloid Fibril Growth Based on Intrinsic Fluorescence. ChemBioChem, 2013, 14, 846-850.	2.6	145
62	Elements of image processing in localization microscopy. Journal of Optics (United Kingdom), 2013, 15, 094012.	2.2	40
63	ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Human Molecular Genetics, 2012, 21, 1-9.	2.9	148
64	In Situ Measurements of the Formation and Morphology of Intracellular β-Amyloid Fibrils by Super-Resolution Fluorescence Imaging. Journal of the American Chemical Society, 2011, 133, 12902-12905.	13.7	151
65	A FRET Sensor for Nonâ€Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem, 2011, 12, 673-680.	2.1	98
66	Increased fiber outgrowth from xeno-transplanted human embryonic dopaminergic neurons with co-implants of polymer-encapsulated genetically modified cells releasing glial cell line-derived neurotrophic factor. Brain Research Bulletin, 2005, 66, 135-142.	3.0	37