Ted Ozersky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3277881/publications.pdf

Version: 2024-02-01

30	1,179	18	29
papers	citations	h-index	g-index
31	31	31	1360 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Ecology under lake ice. Ecology Letters, 2017, 20, 98-111.	6.4	320
2	Heating up a cold subject: prospects for under-ice plankton research in lakes. Journal of Plankton Research, 2015, 37, 277-284.	1.8	91
3	Dreissenid phosphorus excretion can sustain C. glomerata growth along a portion of Lake Ontario shoreline. Journal of Great Lakes Research, 2009, 35, 321-328.	1.9	76
4	Recent ecological change in ancient lakes. Limnology and Oceanography, 2018, 63, 2277-2304.	3.1	68
5	The " <scp>M</scp> elosira years―of Lake <scp>B</scp> aikal: Winter environmental conditions at ice onset predict underâ€ice algal blooms in spring. Limnology and Oceanography, 2015, 60, 1950-1964.	3.1	63
6	The state of Lake Simcoe (Ontario, Canada): the effects of multiple stressors on phosphorus and oxygen dynamics. Inland Waters, 2013, 3, 51-74.	2.2	44
7	Invasive mussels modify the cycling, storage and distribution of nutrients and carbon in a large lake. Freshwater Biology, 2015, 60, 827-843.	2.4	42
8	Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. BioScience, 2021, 71, 1011-1027.	4.9	42
9	Invasive Mussels Alter the Littoral Food Web of a Large Lake: Stable Isotopes Reveal Drastic Shifts in Sources and Flow of Energy. PLoS ONE, 2012, 7, e51249.	2.5	41
10	Benthic invaders control the phosphorus cycle in the worldâ \in TM s largest freshwater ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
11	Submerged aquatic vegetation in Cook's Bay, Lake Simcoe: Assessment of changes in response to increased water transparency. Journal of Great Lakes Research, 2011, 37, 72-82.	1.9	35
12	The Changing Face of Winter: Lessons and Questions From the Laurentian Great Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006247.	3.0	35
13	Effects of formalin preservation on invertebrate stable isotope values over decadal time scales. Canadian Journal of Zoology, 2012, 90, 1320-1327.	1.0	32
14	Effects of water movement on the distribution of invasive dreissenid mussels in Lake Simcoe, Ontario. Journal of Great Lakes Research, 2011, 37, 46-54.	1.9	30
15	Fourteen years of dreissenid presence in the rocky littoral zone of a large lake: effects on macroinvertebrate abundance and diversity. Journal of the North American Benthological Society, 2011, 30, 913-922.	3.1	29
16	Recent changes in the spring microplankton of Lake Baikal, Russia. Limnologica, 2019, 75, 19-29.	1.5	28
17	Dreissenid mussels enhance nutrient efflux, periphyton quantity and production in the shallow littoral zone of a large lake. Biological Invasions, 2013, 15, 2799-2810.	2.4	25

Long-Term and Ontogenetic Patterns of Heavy Metal Contamination in Lake Baikal Seals (<i>Pusa) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 18

#	Article	IF	CITATION
19	Nutrient limitation of benthic algae in Lake Baikal, Russia. Freshwater Science, 2018, 37, 472-482.	1.8	17
20	Nearshore–offshore differences in planktonic chlorophyll and phytoplankton nutrient status after dreissenid establishment in a large shallow lake. Inland Waters, 2013, 3, 253-268.	2.2	15
21	Impacts of hydrodynamics and benthic communities on phytoplankton distributions in a large, dreissenid-colonized lake (Lake Simcoe, Ontario, Canada). Inland Waters, 2013, 3, 269-284.	2.2	15
22	The Lake Ice Continuum Concept: Influence of Winter Conditions on Energy and Ecosystem Dynamics. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006165.	3.0	15
23	Invasive dreissenid mussels and round gobies: A benthic pathway for the trophic transfer of microcystin. Environmental Toxicology and Chemistry, 2013, 32, 2159-2164.	4.3	14
24	Past and present mercury accumulation in the Lake Baikal seal: Temporal trends, effects of life history, and toxicological implications. Environmental Toxicology and Chemistry, 2018, 37, 1476-1486.	4.3	11
25	Lake Characteristics, Population Properties and Invasion History Determine Impact of Invasive Bivalves on Lake Nutrient Dynamics. Ecosystems, 2019, 22, 1721-1735.	3.4	9
26	Taxonomic and functional differences between winter and summer crustacean zooplankton communities in lakes across a trophic gradient. Journal of Plankton Research, 2021, 43, 732-750.	1.8	8
27	Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 2020, 65, 2772-2786.	3.1	7
28	Large variation in periphyton l´13C and l´15N values in the upper Great Lakes: Correlates and implications. Journal of Great Lakes Research, 2019, 45, 986-990.	1.9	5
29	A unified dataset of colocated sewage pollution, periphyton, and benthic macroinvertebrate community and food web structure from Lake Baikal (Siberia). Limnology and Oceanography Letters, 0,	3.9	5
30	Factors regulating lake periphyton biomass and nutrient limitation status across a large trophic gradient. Freshwater Biology, 2021, 66, 2338-2350.	2.4	2