
Ke Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3277439/publications.pdf Version: 2024-02-01

KE ZHANC

#	Article	IF	CITATIONS
1	Safe and just operating spaces for regional social-ecological systems. Global Environmental Change, 2014, 28, 227-238.	7.8	311
2	Extending the timescale and range of ecosystem services through paleoenvironmental analyses, exemplified in the lower Yangtze basin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1111-20.	7.1	163
3	Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress. Current Microbiology, 2016, 73, 574-581.	2.2	126
4	Vegetation history, climate change and human activities over the last 6200years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293, 197-205.	2.3	78
5	Poverty alleviation strategies in eastern China lead to critical ecological dynamics. Science of the Total Environment, 2015, 506-507, 164-181.	8.0	78
6	Late Holocene Vegetation and Climate Oscillations in the Qaidam Basin of the Northeastern Tibetan Plateau. Quaternary Research, 2010, 73, 59-69.	1.7	71
7	Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 2018, 8, 4550.	3.3	68
8	Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. International Journal of Sediment Research, 2019, 34, 205-215.	3.5	44
9	Integrating long-term dynamics of ecosystem services into restoration and management of large shallow lakes. Science of the Total Environment, 2019, 671, 66-75.	8.0	38
10	Long-term succession of aquatic plants reconstructed from palynological records in a shallow freshwater lake. Science of the Total Environment, 2018, 643, 312-323.	8.0	36
11	Ecological shift and resilience in China's lake systems during the last two centuries. Global and Planetary Change, 2018, 165, 147-159.	3.5	34
12	China's Degraded Environment Enters A New Normal. Trends in Ecology and Evolution, 2016, 31, 175-177.	8.7	33
13	Late Holocene lacustrine environmental and ecological changes caused by anthropogenic activities in the Chinese Loess Plateau. Quaternary Science Reviews, 2019, 203, 266-277.	3.0	33
14	Abrupt ecological shifts of lakes during the Anthropocene. Earth-Science Reviews, 2022, 227, 103981.	9.1	33
15	Synergistic impacts of nutrient enrichment and climate change on longâ€term water quality and ecological dynamics in contrasting shallow″ake zones. Limnology and Oceanography, 2021, 66, 3271-3286.	3.1	32
16	Late Holocene vegetation dynamic and human activities reconstructed from lake records in western Loess Plateau, China. Quaternary International, 2010, 227, 38-45.	1.5	29
17	Using palaeolimnological data and historical records to assess long-term dynamics of ecosystem services in typical Yangtze shallow lakes (China). Science of the Total Environment, 2017, 584-585, 791-802.	8.0	28
18	Confronting challenges of managing degraded lake ecosystems in the Anthropocene, exemplified from the Yangtze River Basin in China. Anthropocene, 2018, 24, 30-39.	3.3	27

KE ZHANG

#	Article	IF	CITATIONS
19	A 110-year pollen record of land use and land cover changes in an anthropogenic watershed landscape, eastern China: Understanding past human-environment interactions. Science of the Total Environment, 2019, 650, 2906-2918.	8.0	24
20	A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells. GigaScience, 2019, 8, .	6.4	23
21	Ordered diatom species loss along a total phosphorus gradient in eutrophic lakes of the lower Yangtze River basin, China. Science of the Total Environment, 2019, 650, 1688-1695.	8.0	23
22	A 2700-year high resolution pollen record of climate change from varved Sugan Lake in the Qaidam Basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297, 290-298.	2.3	22
23	High-Throughput Sequencing Analysis of the Endophytic Bacterial Diversity and Dynamics in Roots of the Halophyte Salicornia europaea. Current Microbiology, 2016, 72, 557-562.	2.2	20
24	Deciphering centurial anthropogenic pollution processes in large lakes dominated by socio-economic impacts. Anthropocene, 2020, 32, 100269.	3.3	19
25	Regime shifts and resilience in China's coastal ecosystems. Ambio, 2016, 45, 89-98.	5.5	18
26	Freshwater lake ecosystem shift caused by social-economic transitions in Yangtze River Basin over the past century. Scientific Reports, 2018, 8, 17146.	3.3	18
27	Healthy waterways and ecologically sustainable cities in <scp>Beijingâ€Tianjinâ€Hebei</scp> urban agglomeration (northern China): Challenges and future directions. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1500.	6.5	18
28	Not by Salinity Alone: How Environmental Factors Shape Fungal Communities in Saline Soils. Soil Science Society of America Journal, 2019, 83, 1387-1398.	2.2	15
29	Discrepancy in the responses of diatom diversity to indirect and direct human activities in lakes of the southeastern Tibetan Plateau, China. Anthropocene, 2020, 30, 100243.	3.3	15
30	Patterns and trajectories of macrophyte change in East China's shallow lakes over the past one century. Science China Earth Sciences, 2021, 64, 1735-1745.	5.2	14
31	Characteristics of mineral elements in shoots of three annual halophytes in a saline desert, Northern Xinjiang. Journal of Arid Land, 2013, 5, 244-254.	2.3	13
32	Root Morphology and Rhizosphere Characteristics Are Related to Salt Tolerance of Suaeda salsa and Beta vulgaris L Frontiers in Plant Science, 2021, 12, 677767.	3.6	11
33	Paleolimnological evidence of environmental change in Chinese lakes over the past two centuries. Inland Waters, 2020, 10, 1-10.	2.2	10
34	Spatial variation of organic carbon sequestration in large lakes and implications for carbon stock quantification. Catena, 2022, 208, 105768.	5.0	10
35	Application of subfossil cladocerans (water fleas) in assessing ecological resilience of shallow Yangtze River floodplain lake systems (China). Science China Earth Sciences, 2018, 61, 1157-1168.	5.2	7
36	Who determines the trade-offs between agricultural production and environmental quality? An evolutionary perspective from rural eastern China. International Journal of Agricultural Sustainability, 2019, 17, 347-366.	3.5	7

KE ZHANG

#	Article	IF	CITATIONS
37	Pollen-vegetation/land use relationships in southeastern China: Complexity and applicability for paleoenvironmental reconstruction. Ecological Indicators, 2020, 116, 106523.	6.3	7
38	A Re-evaluation of Wetland Carbon Sink Mitigation Concepts and Measurements: A Diagenetic Solution. Wetlands, 2022, 42, 1.	1.5	7
39	The Effects of Suaeda salsa/Zea mays L. Intercropping on Plant Growth and Soil Chemical Characteristics in Saline Soil. Agriculture (Switzerland), 2022, 12, 107.	3.1	6
40	The role of tamarisk in the spatial heterogeneity of soil resources in the northern Tarim Basin, Xinjiang, China. Plant and Soil, 2017, 420, 523-538.	3.7	4
41	Lake ecosystem regime shifts induced by agricultural intensification: A century scale paleolimnological investigation from the Huai River Basin (China). Quaternary Science Reviews, 2022, 285, 107522.	3.0	4
42	Potential Indicator Value of Subfossil Gastropods in Assessing the Ecological Health of the Middle and Lower Reaches of the Yangtze River Floodplain System (China). Geosciences (Switzerland), 2018, 8, 222.	2.2	2