John A Roque, Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3277411/publications.pdf

Version: 2024-02-01

567281 752698 1,445 21 15 20 citations h-index g-index papers 23 23 23 1776 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chemical Reviews, 2019, 119, 797-828.	47.7	899
2	Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chemical Science, $2020,11,9784-9806$.	7.4	67
3	Near-infrared absorbing Ru(<scp>ii</scp>) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chemical Science, 2020, 11, 11740-11762.	7.4	67
4	Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. Journal of the American Chemical Society, 2022, 144, 9543-9547.	13.7	48
5	New Class of Homoleptic and Heteroleptic Bis(terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Applied Bio Materials, 2019, 2, 2964-2977.	4.6	45
6	Strained, Photoejecting Ru(II) Complexes that are Cytotoxic Under Hypoxic Conditions. Photochemistry and Photobiology, 2020, 96, 327-339.	2. 5	38
7	Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 16341-16360.	4.0	37
8	Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing π-Expansive Cyclometalating Ligands with Thienyl Groups. Inorganic Chemistry, 2019, 58, 10778-10790.	4.0	34
9	Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. Journal of the American Chemical Society, 2022, 144, 8317-8336.	13.7	32
10	Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorganic Chemistry, 2019, 58, 3156-3166.	4.0	29
11	Bis[pyrrolyl Ru(<scp>ii</scp>)] triads: a new class of photosensitizers for metal–organic photodynamic therapy. Chemical Science, 2020, 11, 12047-12069.	7.4	23
12	TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals, 2020, 13, 137.	3.8	23
13	Discovery of immunogenic cell death-inducing ruthenium-based photosensitizers for anticancer photodynamic therapy. Oncolmmunology, 2021, 10, 1863626.	4.6	22
14	Fineâ€Feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity ^{â€} . Photochemistry and Photobiology, 2022, 98, 73-84.	2.5	20
15	Synthesis, Characterization and Photobiological Studies of Ru(<scp>II</scp>) Dyads Derived from <i>î±</i> êOligothiophene Derivatives of 1,10â€Phenanthroline. Photochemistry and Photobiology, 2019, 95, 267-279.	2.5	16
16	It Takes Three to Tango: The Length of the Oligothiophene Chain Determines the Nature of the Longâ€Lived Excited State and the Resulting Photocytotoxicity of a Ruthenium(II) Photodrug. ChemPhotoChem, 2021, 5, 421-425.	3.0	12
17	Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand. Chemistry - A European Journal, 2020, 26, 14844-14851.	3.3	10
18	NIRâ€Absorbing Ru II Complexes Containing αâ€Oligothiophenes for Applications in Photodynamic Therapy. ChemBioChem, 2020, 21, 3594-3607.	2.6	9

#	Article	IF	CITATIONS
19	Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. Journal of Photochemistry and Photobiology, 2021, 8, 100067.	2.5	8
20	Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. Journal of Physical Chemistry A, 2022, 126, 1336-1344.	2.5	6
21	Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death American Journal of Cancer Research, 2022, 12, 210-228.	1.4	O