Yujiro Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275818/publications.pdf

Version: 2024-02-01

158 papers 13,308 citations

²⁶⁶³⁰
56
h-index

23533 111 g-index

209 all docs 209 docs citations

times ranked

209

6048 citing authors

#	Article	IF	Citations
1	Memories of Kan-san with Two Books. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 273-275.	0.1	O
2	Asymmetric Flow Reactions Catalyzed by Immobilized Diphenylprolinol Alkyl Ether: Michael Reaction and Domino Reactions. Chemistry - an Asian Journal, 2022, 17, e202200314.	3.3	3
3	Highly Sterically Hindered Peptide Bond Formation between α,α-Disubstituted α-Amino Acids and <i>N</i> -Alkyl Cysteines Using α,α-Disubstituted α-Amidonitrile. Journal of the American Chemical Society, 2022, 144, 10145-10150.	13.7	5
4	Time Economy in Total Synthesis. Journal of Organic Chemistry, 2021, 86, 1-23.	3.2	85
5	Oxidative peptide bond formation of glycine–amino acid using 2-(aminomethyl)malononitrile as a glycine unit. Chemical Communications, 2021, 57, 4283-4286.	4.1	6
6	Time and Pot Economy in Total Synthesis. Accounts of Chemical Research, 2021, 54, 1385-1398.	15.6	77
7	Direct Cyclopropanation of αâ€Cyano βâ€Aryl Alkanes by Lightâ€Mediated Single Electron Transfer Between Donor–Acceptor Pairs. Chemistry - A European Journal, 2021, 27, 5901-5905.	3.3	6
8	Amphiphilic Immobilized Diphenylprolinol Alkyl Ether Catalyst on PS-PEG Resin. Bulletin of the Chemical Society of Japan, 2021, 94, 790-797.	3.2	3
9	Three-Pot Synthesis of Chiral <i>Anti</i> -1,3-diols through Asymmetric Organocatalytic Aldol and Wittig Reactions Followed by Epoxidation and Reductive Opening of the Epoxide. Organic Letters, 2021, 23, 5896-5900.	4.6	9
10	Asymmetric Synthesis of Functionalized 9-Methyldecalins Using a Diphenylprolinol-Silyl-Ether-Mediated Domino Michael/Aldol Reaction. Organic Letters, 2021, 23, 6654-6658.	4.6	11
11	Halogen Bonding of <i>N</i> àêHalosuccinimides with Amines and Effects of <i>Brønsted</i> Acids in Quinuclidineâ€Catalyzed Halocyclizations. Helvetica Chimica Acta, 2021, 104, e2100080.	1.6	9
12	Enantiodivergent oneâ€pot synthesis of axially chiral biaryls using organocatalystâ€mediated enantioselective domino reaction and centralâ€ŧoâ€axial chirality conversion. Chemistry - A European Journal, 2021, 27, 15786-15794.	3.3	2
13	Pot and time economies in the total synthesis of Corey lactone. Chemical Science, 2020, 11, 1205-1209.	7.4	48
14	Inversion of the Axial Information during Oxidative Aromatization in the Synthesis of Axially Chiral Biaryls with Organocatalysis as a Key Step. Chemistry - A European Journal, 2020, 26, 4524-4530.	3.3	13
15	Asymmetric Domino Reaction of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes and $\hat{l}\pm$ -Acyl $\hat{l}\pm,\hat{l}^2$ -Unsaturated Cyclic Ketones Catalyzed by Diphenylprolinol Silyl Ether. Organic Letters, 2020, 22, 8603-8607.	4.6	5
16	Pot-Economical Total Synthesis of Clinprost. Organic Letters, 2020, 22, 9365-9370.	4.6	13
17	Evidence for an enolate mechanism in the asymmetric Michael reaction of $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes and ketones via a hybrid system of two secondary amine catalysts. Chemical Science, 2020, 11, 11293-11297.	7.4	18
18	Asymmetric Synthesis of Corey Lactone and Latanoprost. European Journal of Organic Chemistry, 2020, 2020, 6221-6227.	2.4	15

#	Article	IF	Citations
19	Asymmetric Oneâ€Pot Mukaiyama Michael/Michael Reaction Catalyzed by Diphenylprolinol Silyl Ether. European Journal of Organic Chemistry, 2020, 2020, 5596-5600.	2.4	6
20	Asymmetric Michael Reaction of Aldehydes and αâ€Cyano α,βâ€Unsaturated Esters Catalyzed by Diphenylprolinol Silyl Ether; a Facile Asymmetric Route to 3,4,5â€Trisubstituted Piperidines. ChemCatChem, 2020, 12, 2412-2415.	3.7	3
21	Inversion of the Axial Information during Oxidative Aromatization in the Synthesis of Axially Chiral Biaryls with Organocatalysis as a Key Step. Chemistry - A European Journal, 2020, 26, 4436-4436.	3.3	0
22	One-pot Synthesis of Chiral <i>cis</i> -Hydrindanes via Diphenylprolinol Silyl Ether Mediated Domino Reaction and Aldol Condensation. Chemistry Letters, 2020, 49, 867-869.	1.3	10
23	Highly Enantioselective Access to $\langle i \rangle syn \langle i \rangle - \hat{l} \pm \hat{l}^3$ -Dihydroxycarbonyl Building Blocks via Organocatalyst-mediated Aldol Reaction as a Key Step. Chemistry Letters, 2020, 49, 940-943.	1.3	3
24	Domino and one-pot syntheses of biologically active compounds using diphenylprolinol silyl ether. Physical Sciences Reviews, 2020, 5, .	0.8	2
25	Diarylprolinolâ€Mediated Asymmetric Direct Crossâ€Aldol Reaction of α,βâ€Unsaturated Aldehyde as an Electrophilic Aldehyde. Chemistry - an Asian Journal, 2019, 14, 4146-4149.	3.3	6
26	Asymmetric Michael Reaction of \hat{l}_{\pm} -CF ₃ Thioester and \hat{l}_{\pm} , \hat{l}_{\pm} -Unsaturated Aldehyde Catalyzed by Diphenylprolinol Silyl Ether. Organic Letters, 2019, 21, 5183-5186.	4.6	15
27	Asymmetric Synthesis of Biaryl Atropisomers Using an Organocatalystâ€Mediated Domino Reaction as the Key Step. Chemistry - A European Journal, 2019, 25, 10319-10322.	3.3	19
28	Domino Michael/Michael Reaction for the Formation of Chiral Spirocycles Using a Diphenylprolinol Silyl Ether. European Journal of Organic Chemistry, 2019, 2019, 678-681.	2.4	6
29	Sterically Congested Ester Formation from αâ€Substituted Malononitrile and Alcohol by an Oxidative Method Using Molecular Oxygen. European Journal of Organic Chemistry, 2019, 2019, 675-677.	2.4	17
30	Asymmetric Synthesis of Chiral 1,3-Dimethyl Units Through a Double Michael Reaction of Nitromethane and Crotonaldehyde Catalyzed by Diphenylprolinol Silyl Ether. Synlett, 2019, 30, 442-448.	1.8	1
31	Innenrù⁄4cktitelbild: Direct Asymmetric Michael Reaction of α,βâ€Unsaturated Aldehydes and Ketones Catalyzed by Two Secondary Amine Catalysts (Angew. Chem. 7/2018). Angewandte Chemie, 2018, 130, 2023-2023.	2.0	0
32	Enantio―and Diastereoselective Synthesis of Latanoprost using an Organocatalyst. Chemistry - A European Journal, 2018, 24, 8409-8414.	3.3	20
33	Prolinate Salt as a Catalyst in the <i>syn</i> Selective, Asymmetric Mannich Reaction of Alkynyl Imine. Organic Letters, 2018, 20, 2391-2394.	4.6	27
34	Synthetic Studies on Presporolide, a Putative Enediyne Precursor of Sporolides. Organic Letters, 2018, 20, 276-279.	4.6	3
35	Twoâ€Pot Synthesis of Chiral 1,3â€ <i>syn</i> â€Diols through Asymmetric Organocatalytic Aldol and Wittig Reactions Followed by Domino Hemiacetal/Oxyâ€Michael Reactions. Chemistry - A European Journal, 2018, 24, 4909-4915.	3.3	24
36	Asymmetric Michael Reaction of Aldehyde and \hat{l}^2 -Substituted \hat{l}_\pm -Nitroacrylate Catalyzed by Diphenylprolinol Silyl Ether. Chemistry Letters, 2018, 47, 833-835.	1.3	5

3

#	Article	IF	CITATIONS
37	Direct Asymmetric Michael Reaction of $\hat{l}\pm,\hat{l}^2\hat{a}\in U$ nsaturated Aldehydes and Ketones Catalyzed by Two Secondary Amine Catalysts. Angewandte Chemie, 2018, 130, 1976-1980.	2.0	9
38	Direct Asymmetric Michael Reaction of $\hat{l}_{\pm},\hat{l}^2\hat{a}$ Unsaturated Aldehydes and Ketones Catalyzed by Two Secondary Amine Catalysts. Angewandte Chemie - International Edition, 2018, 57, 1958-1962.	13.8	38
39	Asymmetric Michael Reaction of Aldehydes and Dicyanoalkenes Catalyzed by Diphenylprolinol Silyl Ether. European Journal of Organic Chemistry, 2018, 2018, 6843-6847.	2.4	5
40	Autoinductive conversion of \hat{l}_{\pm} , \hat{l}_{\pm} -diiodonitroalkanes to amides and esters catalysed by iodine byproducts under O ₂ . Chemical Communications, 2018, 54, 6360-6363.	4.1	8
41	Total Synthesis of Estradiol Methyl Ether and Its Fiveâ€Pot Synthesis with an Organocatalyst. European Journal of Organic Chemistry, 2018, 2018, 5629-5638.	2.4	24
42	Enantioselective Total Synthesis of Beraprost Using Organocatalyst. Organic Letters, 2017, 19, 1112-1115.	4.6	31
43	Pot Economy in the Total Synthesis of Estradiol Methyl Ether by Using an Organocatalyst. Angewandte Chemie, 2017, 129, 11974-11977.	2.0	12
44	Pot Economy in the Total Synthesis of Estradiol Methyl Ether by Using an Organocatalyst. Angewandte Chemie - International Edition, 2017, 56, 11812-11815.	13.8	50
45	Prolinate Salts as Catalysts for \hat{l}_{\pm} -Aminoxylation of Aldehyde and Associated Mechanistic Insights. Organic Letters, 2017, 19, 4155-4158.	4.6	13
46	Sterically Demanding Oxidative Amidation of αâ€Substituted Malononitriles with Amines Using O ₂ . Angewandte Chemie, 2016, 128, 9206-9210.	2.0	9
47	Sterically Demanding Oxidative Amidation of αâ€Substituted Malononitriles with Amines Using O ₂ . Angewandte Chemie - International Edition, 2016, 55, 9060-9064.	13.8	47
48	Total Synthesis of the 7,10â€Epimer of the Proposed Structure of Amphidinolide N, Part II: Synthesis of C17â€"C29 Subunit and Completion of the Synthesis. Chemistry - A European Journal, 2016, 22, 3287-3291.	3.3	18
49	Asymmetric Aldol Reaction of Dichloroacetaldehyde Catalyzed by Diarylprolinol. Advanced Synthesis and Catalysis, 2016, 358, 2345-2351.	4.3	11
50	Enantioselective Total Synthesis of RQN-18690A (18-Deoxyherboxidiene). Organic Letters, 2016, 18, 3382-3385.	4.6	9
51	Time Economical Total Synthesis of (â^')-Oseltamivir. Organic Letters, 2016, 18, 3426-3429.	4.6	66
52	Asymmetric Diels–Alder Reaction of α‧ubstituted and β,βâ€Disubstituted α,βâ€Enals via Diarylprolinol Silyl Ether for the Construction of Allâ€Carbon Quaternary Stereocenters. Chemistry - A European Journal, 2016, 22, 15874-15880.	3.3	10
53	Formal Synthesis of Ezetimibe Using a Proline-mediated, Asymmetric, Three-component Mannich Reaction. Chemistry Letters, 2016, 45, 30-32.	1.3	5
54	The DFT Calculation with NBO Analysis of $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ Enamines Derived from \hat{l}_{\pm} -Alkoxyaldehyde with Pyrrolidine. Bulletin of the Chemical Society of Japan, 2016, 89, 455-459.	3.2	2

#	Article	IF	Citations
55	Multistep Continuous-Flow Synthesis of ($\hat{a}\in$ ")-Oseltamivir. Synthesis, 2016, 49, 424-428.	2.3	11
56	Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine. Chemistry - A European Journal, 2016, 22, 5538-5542.	3.3	19
57	¹⁶ O/ ¹⁸ O Exchange of Aldehydes and Ketones caused by H ₂ ¹⁸ O in the Mechanistic Investigation of Organocatalyzed Michael, Mannich, and Aldol Reactions. Chemistry - A European Journal, 2016, 22, 5868-5872.	3.3	11
58	Total Synthesis of the 7,10â€Epimer of the Proposed Structure of Amphidinolide N, Part I: Synthesis of the C1–C13 Subunit. Chemistry - A European Journal, 2016, 22, 3282-3286.	3.3	15
59	One-Pot Synthesis of (<i>S</i>)-Baclofen via Aldol Condensation of Acetaldehyde with Diphenylprolinol Silyl Ether Mediated Asymmetric Michael Reaction as a Key Step. Organic Letters, 2016, 18, 4-7.	4.6	44
60	Pot economy and one-pot synthesis. Chemical Science, 2016, 7, 866-880.	7.4	807
61	Total synthesis of avermectin B1a revisited. Journal of Antibiotics, 2016, 69, 31-50.	2.0	22
62	Asymmetric Aldol Reaction of Chloral Catalyzed by Diarylprolinol. ChemCatChem, 2015, 7, 1646-1649.	3.7	12
63	Asymmetric Nitrocyclopropanation of αâ€Substituted α,βâ€Enals Catalyzed by Diphenylprolinol Silyl Ether for the Construction of Allâ€Carbon Quaternary ÂStereogenic Centers. European Journal of Organic Chemistry, 2015, 2015, 5747-5754.	2.4	12
64	Oxidative Amidation of Nitroalkanes with Amine Nucleophiles using Molecular Oxygen and Iodine. Angewandte Chemie - International Edition, 2015, 54, 12986-12990.	13.8	55
65	Asymmetric Aldol Reaction of α,αâ€Disubstituted Acetaldehydes Catalyzed by Diphenylprolinol Silyl Ether for the Construction of Quaternary Stereogenic Centers. European Journal of Organic Chemistry, 2015, 2015, 4316-4319.	2.4	10
66	Total Synthesis of Limonin. Angewandte Chemie - International Edition, 2015, 54, 8538-8541.	13.8	75
67	Two Reaction Mechanisms via Iminium Ion Intermediates: The Different Reactivities of Diphenylprolinol Silyl Ether and Trifluoromethylâ€Substituted Diarylprolinol Silyl Ether. Chemistry - A European Journal, 2015, 21, 12337-12346.	3.3	46
68	Asymmetric Formal [3+2] Cycloaddition Reaction of Succinaldehyde and Nitroalkene Catalyzed by Diphenylprolinol Silyl Ether. European Journal of Organic Chemistry, 2015, 2015, 4320-4324.	2.4	11
69	Asymmetric Organocatalyzed Epoxidation of 2â€Oxoindolineâ€3â€ylidene Acetaldehydes. ChemCatChem, 2015, 7, 155-159.	3.7	18
70	The Asymmetric Catalytic Mannich Reaction Catalyzed by Organocatalyst ^ ^mdash; A Personal Account ^ ^mdash;. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1228-1238.	0.1	13
71	A Theoretical and Experimental Study of the Effects of Silyl Substituents in Enantioselective Reactions Catalyzed by Diphenylprolinol Silyl Ether. Chemistry - A European Journal, 2014, 20, 17077-17088.	3.3	54
72	Nef Reaction with Molecular Oxygen in the Absence of Metal Additives, and Mechanistic Insights. Chemistry - A European Journal, 2014, 20, 15753-15759.	3.3	45

#	Article	IF	Citations
73	Asymmetric Aldol Reaction of αâ€Acetoxyimino Aldehydes and its Application in the Synthesis of Substituted 1,2â€Oxazine Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 3106-3118.	4.3	5
74	Asymmetric Organocatalyzed Michael Addition of Nitromethane to a 2â€Oxoindolineâ€3â€ylidene Acetaldehyde and the Three Oneâ€Pot Sequential Synthesis of (â^')â€Horsfiline and (â^')â€Coerulescine. Chemistry - A European Journal, 2014, 20, 13583-13588.	3.3	57
75	Diphenylprolinol Silyl Ether Catalyzed Asymmetric Michael Reaction of Nitroalkanes and β,βâ€Disubstituted α,βâ€Unsaturated Aldehydes for the Construction of Allâ€Carbon Quaternary Stereogenic Centers. Chemistry - A European Journal, 2014, 20, 12072-12082.	3.3	20
76	Asymmetric Aldol Reaction of Formaldehyde Catalyzed by Diarylprolinol. Chemistry Letters, 2014, 43, 556-558.	1.3	27
77	Solvent-mediated Tuning of the Regioselectivity of Intramolecular Diaryl Ether Formation: Total Synthesis of (+)-Aspercyclide C. Chemistry Letters, 2014, 43, 349-351.	1.3	1
78	Biomimetic Total Synthesis of Cyanosporaside Aglycons from a Single Enediyne Precursor through Siteâ€Selective ⟨i⟩p⟨/i⟩â€Benzyne Hydrochlorination. Angewandte Chemie - International Edition, 2014, 53, 13902-13906.	13.8	31
79	Diarylprolinol in an Asymmetric, Direct Crossâ€Aldol Reaction with Alkynyl Aldehydes. ChemCatChem, 2013, 5, 2887-2892.	3.7	23
80	Oneâ€Pot Synthesis of (â^')â€Oseltamivir and Mechanistic Insights into the Organocatalyzed Michael Reaction. Chemistry - A European Journal, 2013, 19, 17789-17800.	3.3	87
81	Remote 1,6â€Stereocontrol by Iminiumâ€mediated Organocatalytic Events. ChemCatChem, 2013, 5, 3499-3501.	3.7	56
82	Organocatalystâ€Mediated Dehydrogenation of Aldehydes to α,βâ€Unsaturated Aldehydes, and Oxidative and Enantioselective Reaction of Aldehydes and Nitromethane Catalyzed by Diphenylprolinol Silyl Ether. Advanced Synthesis and Catalysis, 2013, 355, 3661-3669.	4.3	23
83	Pot Economy in the Synthesis of Prostaglandinâ€A ₁ and E ₁ Methyl Esters. Angewandte Chemie - International Edition, 2013, 52, 3450-3452.	13.8	106
84	Stoichiometric Reactions of Enamines Derived from Diphenylprolinol Silyl Ethers with Nitro Olefins and Lessons for the Corresponding Organocatalytic Conversions – a Survey. Helvetica Chimica Acta, 2013, 96, 799-852.	1.6	75
85	Asymmetric Aldol Reaction of Glyoxal Catalyzed by Diarylprolinol. ChemCatChem, 2013, 5, 2883-2885.	3.7	22
86	Asymmetric Mannich Reaction of αâ€Keto Imines Catalyzed by Diarylprolinol Silyl Ether. Chemistry - A European Journal, 2013, 19, 7678-7681.	3.3	15
87	Asymmetric Formal [3 + 2] Cycloaddition Reaction of Succinaldehyde via Diarylprolinol-mediated Domino Aldol–Acetalization Reaction for the Construction of Tetrahydrofuran. Chemistry Letters, 2013, 42, 1294-1296.	1.3	14
88	Concise Synthesis of the Tetracyclic Framework of Azadiradione: Tandem Radical Cyclization Route. Chemistry Letters, 2013, 42, 220-221.	1.3	9
89	Diarylprolinol in an asymmetric aldol reaction of an \hat{l} ±-alkyl- \hat{l} ±-oxo aldehyde as an electrophile. Chemical Communications, 2012, 48, 4570.	4.1	31
90	Organocatalytic 1,4â€Addition Reaction of α,βâ€Î³,δâ€Diunsaturated Aldehydes versus 1,6â€Addition Reaction. ChemCatChem, 2012, 4, 959-962.	3.7	52

#	Article	IF	Citations
91	Flowing and Vibrant Organocatalysis. ChemCatChem, 2012, 4, 887-889.	3.7	2
92	Organocatalytic, Enantioselective Intramolecular $[6+2]$ Cycloaddition Reaction for the Formation of Tricyclopentanoids and Insight on Its Mechanism from a Computational Study. Journal of the American Chemical Society, 2011, 133, 20175-20185.	13.7	66
93	Synthesis of (â€")â€Oseltamivir by Using a Microreactor in the Curtius Rearrangement. European Journal of Organic Chemistry, 2011, 2011, 6020-6031.	2.4	49
94	Organocatalyzed <i>Michael</i> Addition of Aldehydes to Nitro Alkenes – Generally Accepted Mechanism Revisited and Revised. Helvetica Chimica Acta, 2011, 94, 719-745.	1.6	185
95	Oneâ€Pot Synthesis of Chiral αâ€Substituted β,γâ€Epoxy Aldehyde Derivatives through an Asymmetric Aldol Reaction of Chloroacetaldehyde. Angewandte Chemie - International Edition, 2011, 50, 2804-2807.	13.8	52
96	Oneâ€Pot Highâ€Yielding Synthesis of the DPP4â€Selective Inhibitor ABTâ€341 by a Fourâ€Component Coupling Mediated by a Diphenylprolinol Silyl Ether. Angewandte Chemie - International Edition, 2011, 50, 2824-2827.	13.8	112
97	Oxidative and Enantioselective Crossâ€Coupling of Aldehydes and Nitromethane Catalyzed by Diphenylprolinol Silyl Ether. Angewandte Chemie - International Edition, 2011, 50, 3920-3924.	13.8	132
98	Inside Cover: Oneâ€Pot Highâ€Yielding Synthesis of the DPP4â€Selective Inhibitor ABTâ€341 by a Fourâ€Compon Coupling Mediated by a Diphenylprolinol Silyl Ether (Angew. Chem. Int. Ed. 12/2011). Angewandte Chemie - International Edition, 2011, 50, 2650-2650.	ent 13.8	1
99	Asymmetric Mannich Reaction of Imines Derived from Aliphatic and Aromatic Aldehydes Catalyzed by Diarylprolinol Silyl Ether. Chemistry - A European Journal, 2011, 17, 8273-8276.	3.3	27
100	Oneâ€Pot Synthesis of Chiral Aziridines by a Domino Reaction by Using Desulfonylative Formation on the ⟨i⟩N⟨/i⟩â€Tosyl Imine of Chloroacetaldehyde with an Asymmetric Mannich Reaction as a Key Step. Chemistry - A European Journal, 2011, 17, 11715-11718.	3.3	25
101	Diarylprolinol in the Direct Asymmetric Aldol Reaction of Trifluoromethylacetaldehyde Ethyl Hemiacetal with Aldehyde. Synlett, 2011, 2011, 485-488.	1.8	30
102	Formal Total Synthesis of Fostriecin by 1,4â€Asymmetric Induction with an Alkyne–Cobalt Complex. Chemistry - A European Journal, 2010, 16, 10150-10159.	3.3	39
103	High‥ielding Synthesis of the Antiâ€Influenza Neuraminidase Inhibitor (â^')â€Oseltamivir by Two "Oneâ€Pot Sequences. Chemistry - A European Journal, 2010, 16, 12616-12626.	â €• 3.3	138
104	One-pot synthesis of chiral bicyclo [3.3.0] octatrienes using diphenylprolinol silyl ether-mediated ene-type reaction. Tetrahedron, 2010, 66, 4894-4899.	1.9	23
105	Asymmetric Epoxidation of α-Substituted Acroleins Catalyzed by Diphenylprolinol Silyl Ether. Organic Letters, 2010, 12, 5434-5437.	4.6	60
106	Polymeric Ethyl Glyoxylate in an Asymmetric Aldol Reaction Catalyzed by Diarylprolinol. Organic Letters, 2010, 12, 2966-2969.	4.6	78
107	Structures of the Reactive Intermediates in Organocatalysis with Diarylprolinol Ethers. Helvetica Chimica Acta, 2009, 92, 1225-1259.	1.6	157
108	High‥ielding Synthesis of the Antiâ€Influenza Neuramidase Inhibitor (â^')â€Oseltamivir by Three "Oneâ€Pot Operations. Angewandte Chemie - International Edition, 2009, 48, 1304-1307.	― 13.8	355

#	Article	IF	CITATIONS
109	Total synthesis and determination of the absolute configuration of FD-838, a naturally occurring azaspirobicyclic product. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3863-3865.	2.2	20
110	Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic Michael Reaction for the Formation of α,αâ€Disubstituted αâ€Amino Acid Derivatives. Chemistry - an Asian Journal, 2009, 4, 246-249.	3.3	59
111	Diphenylprolinol Silyl Ether Catalysis in an Asymmetric Formal Carbo [3 + 3] Cycloaddition Reaction via a Domino Michael/Knoevenagel Condensation. Organic Letters, 2009, 11, 45-48.	4.6	115
112	Diphenylprolinol Silyl Ether as a Catalyst in an Asymmetric, Catalytic, and Direct Michael Reaction of Nitroethanol with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes. Organic Letters, 2009, 11, 4056-4059.	4.6	54
113	Asymmetric Aldol Reaction of Acetaldehyde and Isatin Derivatives for the Total Syntheses of <i>ent</i> -Convolutamydine E and CPC-1 and a Half Fragment of Madindoline A and B. Organic Letters, 2009, 11, 3854-3857.	4.6	207
114	Diphenylprolinol silyl ether as a catalyst in an asymmetric, catalytic and direct \hat{l}_{\pm} -benzoyloxylation of aldehydes. Chemical Communications, 2009, , 3083.	4.1	71
115	A Diarylprolinol in an Asymmetric, Catalytic, and Direct Crossedâ€Aldol Reaction of Acetaldehyde. Angewandte Chemie - International Edition, 2008, 47, 2082-2084.	13.8	194
116	Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic, Formal Aza [3+3] Cycloaddition Reaction for the Formation of Enantioenriched Piperidines. Angewandte Chemie - International Edition, 2008, 47, 4012-4015.	13.8	118
117	Asymmetric Michael Reaction of Acetaldehyde Catalyzed by Diphenylprolinol Silyl Ether. Angewandte Chemie - International Edition, 2008, 47, 4722-4724.	13.8	213
118	Asymmetric Diels–Alder Reactions of α,βâ€Unsaturated Aldehydes Catalyzed by a Diarylprolinol Silyl Ether Salt in the Presence of Water. Angewandte Chemie - International Edition, 2008, 47, 6634-6637.	13.8	159
119	Direct Organocatalytic Mannich Reaction of Acetaldehyde: An Improved Catalyst and Mechanistic Insight from a Computational Study. Angewandte Chemie - International Edition, 2008, 47, 9053-9058.	13.8	100
120	The Asymmetric Total Synthesis of (+)â€Cytotrieninâ€A, an Ansamycinâ€Type Anticancer Drug. Angewandte Chemie - International Edition, 2008, 47, 6657-6660.	13.8	51
121	Direct Asymmetric αâ€Amination of Cyclic Ketones Catalyzed by Siloxyproline. Chemistry - an Asian Journal, 2008, 3, 225-232.	3.3	39
122	Organic Solvent-Free, Enantio- and Diastereoselective, Direct Mannich Reaction in the Presence of Water. Organic Letters, 2008, 10, 21-24.	4.6	123
123	Asymmetric, Catalytic, and Direct Self-Aldol Reaction of Acetaldehyde Catalyzed by Diarylprolinol. Organic Letters, 2008, 10, 5581-5583.	4.6	74
124	Formal Total Synthesis of Fostriecin via 1,4-Asymmetric Induction Using Cobalt-Alkyne Complex. Organic Letters, 2008, 10, 1405-1408.	4.6	34
125	Hydroxylation, Epoxidation and Related Reactions., 2007,, 193-254.		0
126	Organocatalyst-Mediated Enantioselective Intramolecular Aldol Reaction Featuring the Rare Combination of Aldehyde as Nucleophile and Ketone as Electrophile. Journal of Organic Chemistry, 2007, 72, 6493-6499.	3.2	51

#	Article	IF	Citations
127	Dry and wet prolines for asymmetric organic solvent-free aldehyde–aldehyde and aldehyde–ketone aldol reactions. Chemical Communications, 2007, , 957-959.	4.1	115
128	Diarylprolinol Silyl Ether as Catalyst of anexo-Selective, Enantioselective Dielsâ^'Alder Reaction. Organic Letters, 2007, 9, 2859-2862.	4.6	134
129	Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic, Tandem Michael/Henry Reaction for the Control of Four Stereocenters. Angewandte Chemie - International Edition, 2007, 46, 4922-4925.	13.8	238
130	Chemistry of Epoxyquinols A, B, and C and Epoxytwinol A. European Journal of Organic Chemistry, 2007, 2007, 3783-3800.	2.4	31
131	L-Proline-catalyzed enantioselective one-pot cross-Mannich reaction of aldehydes. Nature Protocols, 2007, 2, 113-118.	12.0	24
132	Diphenylprolinol Silyl Ether as Catalyst of an Asymmetric, Catalytic, and Direct Michael Reaction of Nitroalkanes with \hat{l}_{\pm},\hat{l}^2 -Unsaturated Aldehydes. Organic Letters, 2007, 9, 5307-5309.	4.6	238
133	Highly Diastereo- and Enantioselective Direct Aldol Reactions in Water. Angewandte Chemie - International Edition, 2006, 45, 958-961.	13.8	455
134	Combined Proline–Surfactant Organocatalyst for the Highly Diastereo- and Enantioselective Aqueous Direct Cross-Aldol Reaction of Aldehydes. Angewandte Chemie - International Edition, 2006, 45, 5527-5529.	13.8	287
135	Large Nonlinear Effect Observed in the Enantiomeric Excess of Proline in Solution and That in the Solid State. Angewandte Chemie - International Edition, 2006, 45, 4593-4597.	13.8	111
136	Enantioselective Ene Reaction of Cyclopentadiene and $\hat{l}\pm,\hat{l}^2$ -Enals Catalyzed by a Diphenylprolinol Silyl Ether. Angewandte Chemie - International Edition, 2006, 45, 6853-6856.	13.8	117
137	In Water or in the Presence of Water?. Angewandte Chemie - International Edition, 2006, 45, 8103-8104.	13.8	393
138	Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie - International Edition, 2005, 44, 4212-4215.	13.8	1,177
139	The Direct, Enantioselective, One-Pot, Three-Component, Cross-Mannich Reaction of Aldehydes: The Reason for the Higher Reactivity of Aldimineversus Aldehyde in Proline-Mediated Mannich and Aldol Reactions. Advanced Synthesis and Catalysis, 2005, 347, 1595-1604.	4.3	44
140	Cysteine-Derived Organocatalyst in a Highly Enantioselective Intramolecular Michael Reaction. Journal of the American Chemical Society, 2005, 127, 16028-16029.	13.7	218
141	First Asymmetric Total Synthesis of Synerazol, an Antifungal Antibiotic, and Determination of Its Absolute Stereochemistry. Journal of Organic Chemistry, 2005, 70, 5643-5654.	3.2	35
142	Direct Proline-Catalyzed Asymmetricα-Aminoxylation of Ketones. Angewandte Chemie - International Edition, 2004, 43, 1112-1115.	13.8	263
143	The Chiral Diamine Mediated Asymmetric Baylis–Hillman Reaction. Advanced Synthesis and Catalysis, 2004, 346, 1106-1110.	4.3	47
144	A Highly Active 4-Siloxyproline Catalyst for Asymmetric Synthesis. Advanced Synthesis and Catalysis, 2004, 346, 1435-1439.	4.3	125

#	Article	IF	CITATIONS
145	Direct Proline-Catalyzed Asymmetric α-Aminoxylation of Aldehydes and Ketones. Journal of Organic Chemistry, 2004, 69, 5966-5973.	3.2	145
146	The Direct and Enantioselective, One-Pot, Three-Component, Cross-Mannich Reaction of Aldehydes. Angewandte Chemie - International Edition, 2003, 42, 3677-3680.	13.8	289
147	Direct proline catalyzed asymmetric α-aminooxylation of aldehydes. Tetrahedron Letters, 2003, 44, 8293-8296.	1.4	308
148	Asymmetric Total Synthesis of Pseurotin A. Organic Letters, 2003, 5, 2287-2290.	4.6	54
149	Application of High Pressure Induced by Water-Freezing to the Direct Catalytic Asymmetric Three-Component Listâ´Barbasâ´Mannich Reaction. Journal of the American Chemical Society, 2003, 125, 11208-11209.	13.7	133
150	Asymmetric Total Synthesis of (â^')-Azaspirene, a Novel Angiogenesis Inhibitor. Journal of the American Chemical Society, 2002, 124, 12078-12079.	13.7	71
151	Diastereoselective Total Synthesis of Both Enantiomers of Epolactaene. Journal of Organic Chemistry, 2002, 67, 9443-9448.	3.2	52
152	New Method for Oxidative Carbon-carbon Bond Formation by the Reaction of Allyl Ethers, 2,3-Dichloro-5,6-dicyano-p-benzoquinone(DDQ) and Silyl Carbon Nucleophiles. Chemistry Letters, 1987, 16, 1811-1814.	1.3	50
153	Catalytic Asymmetric Diels-Alder Reactions. , 0, , 5-55.		18
154	Highlights of Hydrogen Bonding in Total Synthesis. , 0, , 353-371.		2
155	Synthesis of Bicyclo[2.2.2]octanes with a Quaternary Bridgehead Carbon by Diphenylprolinol Silyl Etherâ€mediated Domino Reaction. Asian Journal of Organic Chemistry, 0, , .	2.7	1
156	Catalytic Asymmetric Michael Reaction of Methyl Alkynyl Ketone Catalyzed by Diphenylprolinol Silyl Ether. ACS Organic & Inorganic Au, 0, , .	4.0	2
157	Diarylprolinol with Trifluoromethyl Substituents and Diphenylprolinolâ€Derived Perfluoroalkanesulfonamide as Organocatalysts in the Crossâ€Aldol Reaction of Aldehydes. Advanced Synthesis and Catalysis, 0, , .	4.3	2
158	Asymmetric Michael reaction of malononitrile and $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes catalyzed by diarylprolinol silyl ether. Synlett, 0, 0, .	1.8	2