Saghi Ghaffari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274450/publications.pdf

Version: 2024-02-01

46 2,742 21 21 papers citations h-index

70 70 70 7370
all docs docs citations times ranked citing authors

38

g-index

#	Article	IF	CITATIONS
1	Lysosomal Regulation of Metabolism in Quiescent Hematopoietic Stem Cells: More than Just Autophagy. Cell Stem Cell, 2021, 28, 374-377.	11.1	18
2	Erythroid enucleation: a gateway into a "bloody―world. Experimental Hematology, 2021, 95, 13-22.	0.4	30
3	Using mitochondrial activity to select for potent human hematopoietic stem cells. Blood Advances, 2021, 5, 1605-1616.	5.2	17
4	Red cell distribution width is associated with mortality in nonâ€anemic patients with COVIDâ€19. Journal of Medical Virology, 2021, 93, 4130-4132.	5.0	9
5	Mitochondrial localization and moderated activity are key to murine erythroid enucleation. Blood Advances, 2021, 5, 2490-2504.	5.2	16
6	Mild anemia as a single independent predictor of mortality in patients with COVIDâ€19. EJHaem, 2021, 2, 319-326.	1.0	13
7	Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell, 2020, 26, 359-376.e7.	11.1	169
8	Mild Anemia As a Single Independent Predictor of Mortality in Patients with COVID-19. Blood, 2020, 136, 41-42.	1.4	0
9	Elevated P21 (CDKN1a) Mediates Apoptosis of Beta-Thalassemic Erythroid Cells in Mice but Its Ablation Doesn't Improve Erythroid Maturation. Blood, 2020, 136, 19-19.	1.4	1
10	Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood, 2019, 133, 1943-1952.	1.4	95
11	Following Transcriptome to Uncover FOXO Biological Functions. Methods in Molecular Biology, 2019, 1890, 219-227.	0.9	4
12	Fyn kinase is a novel modulator of erythropoietin signaling and stress erythropoiesis. American Journal of Hematology, 2019, 94, 10-20.	4.1	28
13	Identification of Potent Quiescent Human Hematopoietic Stem Cells Using Mitochondrial Profile. Blood, 2019, 134, 5602-5602.	1.4	0
14	Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nature Communications, 2018, 9, 5200.	12.8	71
15	Preface. Current Topics in Developmental Biology, 2018, 127, xi-xii.	2.2	0
16	Transcription factors FOXO in the regulation of homeostatic hematopoiesis. Current Opinion in Hematology, 2018, 25, 290-298.	2.5	24
17	Stem Cells Seen Through the FOXO Lens: An Evolving Paradigm. Current Topics in Developmental Biology, 2018, 127, 23-47.	2.2	32
18	FOXO3 Transcription Factor Is Essential for Protecting Hematopoietic Stem and Progenitor Cells from Oxidative DNA Damage. Journal of Biological Chemistry, 2017, 292, 3005-3015.	3.4	51

#	Article	IF	Citations
19	Mitochondria and FOXO3 in stem cell homeostasis, a window into hematopoietic stem cell fate determination. Journal of Bioenergetics and Biomembranes, 2017, 49, 343-346.	2.3	23
20	Evidence for AKT-independent regulation of FOXO1 and FOXO3 in haematopoietic stem and progenitor cells. Cell Cycle, 2016, 15, 861-867.	2.6	29
21	Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. British Journal of Haematology, 2016, 174, 661-673.	2.5	41
22	Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis. Matrix Biology, 2016, 52-54, 88-94.	3.6	10
23	Regulation of Hematopoietic Stem Cell Mitochondrial Metabolism. Blood, 2016, 128, SCI-33-SCI-33.	1.4	0
24	Mitochondrial metabolism in hematopoietic stem cells requires functional <scp>FOXO</scp> 3. EMBO Reports, 2015, 16, 1164-1176.	4.5	109
25	CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nature Immunology, 2015, 16, 1060-1068.	14.5	110
26	Loss of Foxo3 Reduces Erythroblast Apoptosis and Enhances RBC Production in Beta-Thalassemic Mice. Blood, 2015, 126, 756-756.	1.4	2
27	A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis. PLoS Genetics, 2015, 11, e1005526.	3.5	55
28	PIAS adds methyl-bias to HSC-differentiation. EMBO Journal, 2014, 33, 93-95.	7.8	2
29	The exosome complex establishes a barricade to erythroid maturation. Blood, 2014, 124, 2285-2297.	1.4	58
30	Stem Cells, Redox Signaling, and Stem Cell Aging. Antioxidants and Redox Signaling, 2014, 20, 1902-1916.	5.4	89
31	Stem cells and the impact of ROS signaling. Development (Cambridge), 2014, 141, 4206-4218.	2.5	492
32	Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells. Stem Cell Reports, 2014, 3, 44-59.	4.8	135
33	The RNA-Degrading Exosome Complex Is an Endogenous Suppressor of Erythroid Maturation. Blood, 2014, 124, 2659-2659.	1.4	0
34	Loss Of p53 Rescues The Defective Function Of Foxo3-/- Hematopoietic Stem Cells But Enhances Their Predisposition To Malignancy. Blood, 2013, 122, 4199-4199.	1.4	9
35	Steady State Differences In Metabolic Properties Of Bone Marrow Versus Spleen Erythroid Cells. Blood, 2013, 122, 943-943.	1.4	5
36	Metabolic Pathways Control Normal and Beta-Thalassemic Erythroid Cell Maturation. Blood, 2012, 120, 369-369.	1.4	1

#	Article	IF	CITATIONS
37	Metabolic Cross Talk Between Foxo3 and mTOR Is Essential for Hematopoietic Stem Cell Function. Blood, 2012, 120, 856-856.	1.4	3
38	Regulation of Erythroid Cell Maturation Is Mediated by a Foxo3-mTOR Cross Talk: Outcome for Beta-Thalassemic Erythropoiesis. Blood, 2011, 118, 176-176.	1.4	0
39	ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3â°'/â°' mice. EMBO Journal, 2010, 29, 4118-4131.	7.8	126
40	Oxidative Stress in the Regulation of Normal and Neoplastic Hematopoiesis. Antioxidants and Redox Signaling, 2008, 10, 1923-1940.	5.4	298
41	Foxo3 Is Essential for the Regulation of Ataxia Telangiectasia Mutated and Oxidative Stress-mediated Homeostasis of Hematopoietic Stem Cells. Journal of Biological Chemistry, 2008, 283, 25692-25705.	3.4	225
42	Foxo3 is required for the regulation of oxidative stress in erythropoiesis. Journal of Clinical Investigation, 2007, 117, 2133-2144.	8.2	270
43	Foxo3 Modulation of ATM and Oxidative Stress Mediates Distinct Functions in the Regulation of Hematopoietic Stem and Progenitor Cell Fate Blood, 2007, 110, 1272-1272.	1.4	1
44	AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation. Blood, 2006, 107, 1888-1891.	1.4	69
45	Foxo3 Transcription Factor Regulates Oxidative Stress in In Vivo Erythropoiesis Blood, 2006, 108, 468-468.	1.4	0
46	Epo Induces Phosphorylation of GATA-1 Transcription Factor Via a PI3-Kinase-Dependent Signaling Pathway Blood, 2004, 104, 816-816.	1.4	O