Peter Glynne-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/327437/publications.pdf

Version: 2024-02-01

70

all docs

65 4,771 29 51
papers citations h-index g-index

70

docs citations

70 3794 times ranked citing authors

#	Article	IF	CITATIONS
1	A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 2007, 17, 1257-1265.	2.6	1,203
2	An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical, 2004, 110, 344-349.	4.1	644
3	Design and fabrication of a new vibration-based electromechanical power generator. Sensors and Actuators A: Physical, 2001, 92, 335-342.	4.1	372
4	Towards a piezoelectric vibration-powered microgenerator. IET Science, Measurement and Technology, 2001, 148, 68.	0.7	275
5	Self-powered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology, 2008, 19, 125202.	2.6	207
6	A novel thick-film piezoelectric micro-generator. Smart Materials and Structures, 2001, 10, 850-852.	3.5	168
7	An investigation of self-powered systems for condition monitoring applications. Sensors and Actuators A: Physical, 2004, 110, 171-176.	4.1	109
8	Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab on A Chip, 2013, 13, 2133.	6.0	106
9	Mode-switching: A new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics, 2010, 50, 68-75.	3.9	95
10	Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation. Lab on A Chip, 2012, 12, 1417-1426.	6.0	94
11	Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics, 2014, 8, 034109.	2.4	94
12	Selfâ€powered systems: a review of energy sources. Sensor Review, 2001, 21, 91-98.	1.8	87
13	Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1258-1266.	3.0	85
14	Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry. Journal of the Acoustical Society of America, 2013, 133, 1885-1893.	1.1	83
15	Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab on A Chip, 2014, 14, 4475-4485.	6.0	79
16	Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices. Lab on A Chip, 2014, 14, 532-541.	6.0	78
17	Acoustic Tractor Beam. Physical Review Letters, 2014, 112, 174302.	7.8	74
18	Manipulation of microparticles using phase-controllable ultrasonic standing waves. Journal of the Acoustical Society of America, 2010, 128, EL195-EL199.	1.1	72

#	Article	IF	Citations
19	A thin-reflector microfluidic resonator for continuous-flow concentration of microorganisms: a new approach to water quality analysis using acoustofluidics. Lab on A Chip, 2014, 14, 3830-3842.	6.0	64
20	Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluidics and Nanofluidics, 2017, 21, 23.	2.2	59
21	Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation. Ultrasonics, 2014, 54, 268-274.	3.9	58
22	Contrast agent-free sonoporation: The use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents. Biomicrofluidics, 2011, 5, 44108-4410815.	2.4	53
23	Acoustic Devices for Particle and Cell Manipulation and Sensing. Sensors, 2014, 14, 14806-14838.	3.8	53
24	Ultrasoundâ€mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microbial Biotechnology, 2020, 13, 613-628.	4.2	53
25	Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab on A Chip, 2013, 13, 1003-1010.	6.0	52
26	An investigation into the effect of modified firing profiles on the piezoelectric properties of thick-film PZT layers on silicon. Measurement Science and Technology, 2000, 11, 526-531.	2.6	37
27	Modal Rayleigh-like streaming in layered acoustofluidic devices. Physics of Fluids, 2016, 28, .	4.0	36
28	Robust acoustic particle manipulation: A thin-reflector design for moving particles to a surface. Journal of the Acoustical Society of America, 2009, 126, EL75-EL79.	1.1	33
29	Acoustically modulated biomechanical stimulation for human cartilage tissue engineering. Lab on A Chip, 2018, 18, 473-485.	6.0	33
30	Flexible Acoustic Particle Manipulation Device with Integrated Optical Waveguide for Enhanced Microbead Assays. Analytical Sciences, 2009, 25, 285-291.	1.6	28
31	Engineering multi-layered tissue constructs using acoustic levitation. Scientific Reports, 2019, 9, 9789.	3.3	28
32	High throughput imaging cytometer with acoustic focussing. RSC Advances, 2015, 5, 83206-83216.	3.6	25
33	Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform. Communications Biology, 2020, 3, 236.	4.4	24
34	Effects of micron scale surface profiles on acoustic streaming. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	21
35	A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines. Acta Astronautica, 2010, 67, 194-203.	3.2	20
36	The effect of ultrasound-related stimuli on cell viability in microfluidic channels. Journal of Nanobiotechnology, 2013, 11, 20.	9.1	18

#	Article	IF	CITATIONS
37	Directed jetting from collapsing cavities exposed to focused ultrasound. Applied Physics Letters, 2012, 100, 024104.	3.3	17
38	A method to determine the ageing rate of thick-film PZT layers. Measurement Science and Technology, 2001, 12, 663-670.	2.6	16
39	Transducer-Plane Streaming Patterns in Thin-Layer Acoustofluidic Devices. Physical Review Applied, 2017, 8, .	3.8	16
40	A novel binary particle fractionation technique. Physics Procedia, 2010, 3, 277-281.	1.2	15
41	Time-resolved full-field imaging of ultrasonic Lamb waves using deflectometry. Experimental Mechanics, 2016, 56, 345-357.	2.0	15
42	Multi-modal particle manipulator to enhance bead-based bioassays. Ultrasonics, 2010, 50, 235-239.	3.9	11
43	Biocompatibility of poly(2-alkyl-2-oxazoline) brush surfaces forÂadherent lung cell lines. Biomaterials, 2015, 61, 26-32.	11.4	11
44	Acoustofluidic particle steering. Journal of the Acoustical Society of America, 2019, 145, 945-955.	1.1	9
45	Transducer arrays for ultrasonic particle manipulation. , 2010, , .		7
46	Bactericidal Effect of Ultrasound-Responsive Microbubbles and Sub-inhibitory Gentamicin against Pseudomonas aeruginosa Biofilms on Substrates With Differing Acoustic Impedance. Ultrasound in Medicine and Biology, 2022, 48, 1888-1898.	1.5	7
47	Efficient finite element modeling of acoustic radiation forces on inhomogeneous elastic particles. AIP Conference Proceedings, 2012, , .	0.4	5
48	Generation of functional hepatocyte 3D discoids in an acoustofluidic bioreactor. Biomicrofluidics, 2019, 13, 014112.	2.4	5
49	Acoustic focussing for sedimentation-free high-throughput imaging of microalgae. Journal of Applied Phycology, 2020, 32, 339-347.	2.8	3
50	Acoustofluidic device for acoustic capture of <i>Bacillus anthracis</i> spore analogues at low concentration. Journal of the Acoustical Society of America, 2021, 149, 4228-4238.	1.1	3
51	A new thin-reflector mode for ultrasonic particle manipulation in layered resonators. , 2009, , .		2
52	The use of ultrasonic waves to minimise biofouling in oceanographic microsensors. , 2012, , .		2
53	Particle manipulation in a microfluidic channel with an electronically controlled linear piezoelectric array. , 2012, , .		2
54	Modelling and Applications of Planar Resonant Devices for Acoustic Particle Manipulation. , 2014, , 127-147.		2

#	Article	IF	CITATIONS
55	Acoustofluidic phase microscopy in a tilted segmentation-free configuration. Biomicrofluidics, 2021, 15, 014102.	2.4	2
56	A new 2-D model of a thin annular disk using a modified assumption. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 421-426.	3.0	1
57	Trapping and micromanipulation using ultrasonic fields and dual ultrasonic/magnetic forces. Proceedings of SPIE, 2010, , .	0.8	O
58	Controlling non-inertial cavitation microstreaming for applications in biomedical research. , 2012, , .		0
59	Mapping out tractor beams: topological angular momentum and reduced axial flux; gradient versus non-conservative forces., 2013,,.		O
60	Acoustic Manipulation Combined with Other Force Fields., 2014,, 242-255.		0
61	Acoustic trapping in bubble-bounded micro-cavities. Optofluidics, Microfluidics and Nanofluidics, 2016, 3, .	0.5	O
62	Development of an Acoustofluidic Platform for Rapid Basophil Enrichment. Journal of Allergy and Clinical Immunology, 2017, 139, AB125.	2.9	0
63	Notice of Removal: A few twists regarding the momentum of shaped beams. , 2017, , .		O
64	Planar Particle Trapping and Manipulation with Ultrasonic Transducer Arrays. , 2013, , .		0
65	Full-Field Strain Imaging of Ultrasonic Waves in Solids. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 81-85.	0.5	O