
Irina Nesmelova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274232/publications.pdf Version: 2024-02-01

IDINA NESMELOVA

#	Article	IF	CITATIONS
1	Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure, 2022, 30, 753-762.e5.	3.3	7
2	Seed-derived defensins from Scots pine: structural and functional features. Planta, 2021, 254, 129.	3.2	3
3	CXCL12-CXCL4 heterodimerization prevents CXCL12-driven breast cancer cell migration. Cellular Signalling, 2020, 66, 109488.	3.6	14
4	Plant Defensins from a Structural Perspective. International Journal of Molecular Sciences, 2020, 21, 5307.	4.1	42
5	Experimental Evolution Generates Novel Oncolytic Vesicular Stomatitis Viruses with Improved Replication in Virus-Resistant Pancreatic Cancer Cells. Journal of Virology, 2020, 94, .	3.4	25
6	Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function. Biochemical Journal, 2020, 477, 3147-3165.	3.7	11
7	CaATP prolongs strong actomyosin binding and promotes futile myosin stroke. Journal of Muscle Research and Cell Motility, 2019, 40, 389-398.	2.0	5
8	Translational diffusion of unfolded and intrinsically disordered proteins. Progress in Molecular Biology and Translational Science, 2019, 166, 85-108.	1.7	7
9	Effect of Reducing Agent TCEP on Translational Diffusion and Supramolecular Assembly in Aqueous Solutions of α-Casein. Journal of Physical Chemistry B, 2019, 123, 2305-2315.	2.6	8
10	Rigidity and flexibility characteristics of DD[E/D]â€ŧransposases Mos1 and Sleeping Beauty. Proteins: Structure, Function and Bioinformatics, 2019, 87, 313-325.	2.6	1
11	Prokaryotic expression and purification of bioactive defension 2 from Pinus sylvestris L Studia Biologica = ĐʿІОЛОГІЧĐІ Đ¡Đ¢Đ£Đ"ІЇ Studia Biologica, 2019, 13, 29-40.	0.4	3
12	NMR structure, conformational dynamics, and biological activity of Ps Def1 defensin from Pinus sylvestris. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1085-1094.	2.3	15
13	NMR solution structure of the RED subdomain of the <i>Sleeping Beauty</i> transposase. Protein Science, 2017, 26, 1171-1181.	7.6	2
14	Effect of Intrinsic Disorder and Self-Association on the Translational Diffusion of Proteins: The Case of α-Casein. Journal of Physical Chemistry B, 2017, 121, 2980-2988.	2.6	15
15	Theoretical and Experimental Investigation of the Translational Diffusion of Proteins in the Vicinity of Temperature-Induced Unfolding Transition. Journal of Physical Chemistry B, 2016, 120, 10192-10198.	2.6	6
16	Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. Journal of Experimental Biology, 2016, 219, 1659-1674.	1.7	82
17	Structure of Scots pine defensin 1 by spectroscopic methods and computational modeling. International Journal of Biological Macromolecules, 2016, 84, 142-152.	7.5	13
18	Dynamics and thermodynamic properties of CXCL7 chemokine. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1987-2007.	2.6	13

IRINA NESMELOVA

#	Article	IF	CITATIONS
19	Mos1 Transposase Thermodynamic Stability and Flexibility. Biophysical Journal, 2015, 108, 521a.	0.5	1
20	The Folding of the Specific DNA Recognition Subdomain of the Sleeping Beauty Transposase Is Temperature-Dependent and Is Required for Its Binding to the Transposon DNA. PLoS ONE, 2014, 9, e112114.	2.5	2
21	NMR structural analysis of <i>Sleeping Beauty</i> transposase binding to DNA. Protein Science, 2014, 23, 23-33.	7.6	15
22	Stabilization Effects of Disulfide Bonds and Dimerization on Cxcl7. Biophysical Journal, 2014, 106, 667a.	0.5	0
23	Thermodynamic Stability and Flexibility of CXC Chemokines. Biophysical Journal, 2013, 104, 60a.	0.5	0
24	The Study of CXCL7-CXCL12 Chemokine Heterodimer by NMR Spectroscopy. Biophysical Journal, 2013, 104, 180a.	0.5	0
25	The heterodimerization of platelet-derived chemokines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 158-168.	2.3	25
26	Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity. Glycobiology, 2013, 23, 508-523.	2.5	42
27	Antitumor Agent Calixarene 0118 Targets Human Galectin-1 as an Allosteric Inhibitor of Carbohydrate Binding. Journal of Medicinal Chemistry, 2012, 55, 5121-5129.	6.4	113
28	1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 31ÂkDa human galectin-7 (p53-induced gene 1) homodimer, a pro-apoptotic lectin. Biomolecular NMR Assignments, 2012, 6, 127-129.	0.8	15
29	Spectroscopic Characterization of Molecular Aggregates in Solutions: Impact on Crystallization of Indomethacin Polymorphs from Acetonitrile and Ethanol. Crystal Growth and Design, 2011, 11, 2368-2378.	3.0	23
30	Structural aspects of binding of α-linked digalactosides to human galectin-1. Glycobiology, 2011, 21, 1627-1641.	2.5	43
31	DDE transposases: Structural similarity and diversity. Advanced Drug Delivery Reviews, 2010, 62, 1187-1195.	13.7	66
32	Lactose Binding To Galectin-1 Occurs With Negative Cooperativity and Attenuates Internal Motions Throughout the Protein. Biophysical Journal, 2010, 98, 36a.	0.5	0
33	Lactose Binding to Galectin-1 Modulates Structural Dynamics, Increases Conformational Entropy, and Occurs with Apparent Negative Cooperativity. Journal of Molecular Biology, 2010, 397, 1209-1230.	4.2	95
34	Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 2009, 15, 97-103.	30.7	404
35	The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: implications for galectin–glycan interactions at the cell surface. Biochemical Journal, 2009, 421, 211-221.	3.7	55
36	1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 29ÂkDa human galectin-1 protein dimer. Biomolecular NMR Assignments, 2008, 2, 203-205.	0.8	32

IRINA NESMELOVA

#	Article	IF	CITATIONS
37	CXC and CC Chemokines Form Mixed Heterodimers. Journal of Biological Chemistry, 2008, 283, 24155-24166.	3.4	65
38	Topomimetics of Amphipathic β-Sheet and Helix-Forming Bactericidal Peptides Neutralize Lipopolysaccharide Endotoxins. Journal of Medicinal Chemistry, 2006, 49, 7754-7765.	6.4	56
39	Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15975-15980.	7.1	424
40	Platelet Factor 4 and Interleukin-8 CXC Chemokine Heterodimer Formation Modulates Function at the Quaternary Structural Level. Journal of Biological Chemistry, 2005, 280, 4948-4958.	3.4	86
41	The Nociceptin Pharmacophore Site for Opioid Receptor Binding Derived from the NMR Structure and Bioactivity Relationships. Journal of Biological Chemistry, 2005, 280, 8134-8142.	3.4	27
42	Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein. Biochemical and Biophysical Research Communications, 2005, 333, 1261-1268.	2.1	25
43	Measuring protein self-diffusion in protein–protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering. Journal of Magnetic Resonance, 2004, 166, 129-133.	2.1	14
44	Discovery and development of anti-angiogenic peptides: A structural link. Angiogenesis, 2003, 6, 83-91.	7.2	23
45	Comparison of13CαH and15NH backbone dynamics in protein GB1. Protein Science, 2003, 12, 914-922.	7.6	16
46	Heat Capacities and a Snapshot of the Energy Landscape in Protein GB1 from the Pre-denaturation Temperature Dependence of Backbone NH Nanosecond Fluctuations. Journal of Molecular Biology, 2003, 325, 149-162.	4.2	36
47	Design of a Partial Peptide Mimetic of Anginex with Antiangiogenic and Anticancer Activity. Journal of Biological Chemistry, 2003, 278, 45746-45752.	3.4	62
48	Platelet factor 4 promotes adhesion of hematopoietic progenitor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis. Blood, 2003, 101, 4687-4694.	1.4	103
49	Generalized concentration dependence of globular protein self-diffusion coefficients in aqueous solutions. Biopolymers, 2002, 63, 132-140.	2.4	69
50	Conformational Exchange on the Microsecond Time Scale in α-Helix and β-Hairpin Peptides Measured by13C NMR Transverse Relaxationâ€. Biochemistry, 2001, 40, 2844-2853.	2.5	18
51	Age-related changes of anisotropic properties of water self-diffusion in human lens: Diffusion anisotropy in lens with aging. Applied Magnetic Resonance, 2001, 21, 89-95.	1.2	Ο
52	Peptide Internal Motions on Nanosecond Time Scale Derived from Direct Fitting of 13C and 15N NMR Spectral Density Functions. Journal of Magnetic Resonance, 2000, 146, 188-195.	2.1	13
53	Internal motional amplitudes and correlated bond rotations in an αâ€helical peptide derived from ¹³ C and ¹⁵ N NMR relaxation. Protein Science, 2000, 9, 2118-2127.	7.6	11
54	Self-diffusion and self-association of lysozyme molecules in solution. BBA - Proteins and Proteomics, 1998, 1383, 311-316.	2.1	36

#	Article	IF	CITATIONS
55	Understanding Galectin Structure–Function Relationships to Design Effective Antagonists. , 0, , 33-69.		15