
Andrew G Sharpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sources of genomic diversity in the self-fertile plant pathogen, Sclerotinia sclerotiorum, and consequences for resistance breeding. PLoS ONE, 2022, 17, e0262891.	2.5	3
2	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	21.4	138
3	Conditional Mapping Identified Quantitative Trait Loci for Grain Protein Concentration Expressing Independently of Grain Yield in Canadian Durum Wheat. Frontiers in Plant Science, 2021, 12, 642955.	3.6	6
4	Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. Plant Biotechnology Journal, 2021, 19, 1624-1643.	8.3	23
5	Long-read sequence assembly: a technical evaluation in barley. Plant Cell, 2021, 33, 1888-1906.	6.6	180
6	Deep neural networks for genomic prediction do not estimate marker effects. Plant Genome, 2021, 14, e20147.	2.8	15
7	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
8	A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nature Plants, 2020, 6, 929-941.	9.3	94
9	Assessing Diversity in the <i>Camelina</i> Genus Provides Insights into the Genome Structure of <i>Camelina sativa</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1297-1308.	1.8	33
10	Machine learning analyses of methylation profiles uncovers tissueâ€specific gene expression patterns in wheat. Plant Genome, 2020, 13, e20027.	2.8	13
11	High Density Mapping of Quantitative Trait Loci Conferring Gluten Strength in Canadian Durum Wheat. Frontiers in Plant Science, 2020, 11, 170.	3.6	14
12	Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS ONE, 2020, 15, e0230855.	2.5	25
13	The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell, 2019, 31, 2888-2911.	6.6	57
14	Mapping quantitative trait loci associated with common bunt resistance in a spring wheat (Triticum) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
15	Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51, 885-895.	21.4	576
16	Genome reâ€sequencing and simple sequence repeat markers reveal the existence of divergent lineages in the Canadian <i>Puccinia striiformis</i> f. sp. <i>tritici</i> population with extensive DNA methylation. Environmental Microbiology, 2018, 20, 1498-1515.	3.8	21
17	The biochemical composition and transcriptome of cotyledons from Brassica napus lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding. BMC Plant Biology, 2018, 18,	3.6	8

Structural features of two major nucleolar organizer regions (NORs), <i>Norâ€B1</i> and <i>Norâ€B2</i>, and chromosomeâ€specific rRNA gene expression in wheat. Plant Journal, 2018, 96, 5.7 17 1148-1159.

64.

ANDREW G SHARPE

#	Article	IF	CITATIONS
19	Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum). PLoS ONE, 2018, 13, e0203283.	2.5	17
20	Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biology, 2018, 19, 112.	8.8	41
21	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
22	High-density genetic mapping of a major QTL for resistance to multiple races of loose smut in a tetraploid wheat cross. PLoS ONE, 2018, 13, e0192261.	2.5	18
23	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	12.6	781
24	Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. Theoretical and Applied Genetics, 2017, 130, 2617-2635.	3.6	27
25	High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS ONE, 2017, 12, e0175285.	2.5	23
26	A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theoretical and Applied Genetics, 2016, 129, 1887-1899.	3.6	205
27	Development and Validation of <i>Thinopyrum elongatum</i> –Expressed Molecular Markers Specific for the Long Arm of Chromosome 7E. Crop Science, 2016, 56, 354-364.	1.8	20
28	Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat. Theoretical and Applied Genetics, 2016, 129, 1373-1382.	3.6	33
29	The developmental transcriptome atlas of the biofuel crop <i>Camelina sativa</i> . Plant Journal, 2016, 88, 879-894.	5.7	60
30	The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 2016, 7, 13390.	12.8	375
31	A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theoretical and Applied Genetics, 2016, 129, 1507-1517.	3.6	15
32	Mapping Seed Phytic Acid Concentration and Iron Bioavailability in a Pea Recombinant Inbred Line Population. Crop Science, 2015, 55, 828-836.	1.8	23
33	A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biology, 2015, 16, 48.	8.8	216
34	Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae. PLoS ONE, 2014, 9, e95877.	2.5	8
35	Gene-based SNP discovery and genetic mapping in pea. Theoretical and Applied Genetics, 2014, 127, 2225-2241.	3.6	74
36	High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets. Theoretical and Applied Genetics, 2014, 127, 2051-2064.	3.6	30

ANDREW G SHARPE

#	Article	IF	CITATIONS
37	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	12.6	2,089
38	Polyploid Evolution of the Brassicaceae during the Cenozoic Era Â. Plant Cell, 2014, 26, 2777-2791.	6.6	165
39	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	12.8	918
40	Comprehensive Transcriptome Assembly of Chickpea (Cicer arietinum L.) Using Sanger and Next Generation Sequencing Platforms: Development and Applications. PLoS ONE, 2014, 9, e86039.	2.5	87
41	Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15, R77.	9.6	456
42	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	17.5	1,049
43	Transcriptome Profiling Identifies Candidate Genes Associated with the Accumulation of Distinct Sulfur Î ³ -Clutamyl Dipeptides in Phaseolus vulgaris and Vigna mungo Seeds. Frontiers in Plant Science, 2013, 4, 60.	3.6	21
44	Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L. PLoS ONE, 2013, 8, e81992.	2.5	40
45	A Mutant Brassica napus (Canola) Population for the Identification of New Genetic Diversity via TILLING and Next Generation Sequencing. PLoS ONE, 2013, 8, e84303.	2.5	59
46	Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins. Journal of Experimental Botany, 2012, 63, 6283-6295.	4.8	25
47	Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.). DNA Research, 2012, 19, 51-65.	3.4	47
48	The genome of flax (<i>Linum usitatissimum</i>) assembled <i>de novo</i> from short shotgun sequence reads. Plant Journal, 2012, 72, 461-473.	5.7	415
49	Introgression of Brassica rapa subsp. sylvestris blackleg resistance into B. napus. Molecular Breeding, 2012, 30, 1495-1506.	2.1	41
50	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	21.4	1,893
51	Gene expression analysis of flax seed development. BMC Plant Biology, 2011, 11, 74.	3.6	112
52	Analysis of B-Genome Chromosome Introgression in Interspecific Hybrids of <i>Brassica napus</i> × <i>B. carinata</i> . Genetics, 2011, 187, 659-673.	2.9	48
53	Patterns of differential gene expression in <i>Brassica napus</i> cultivars infected with <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2009, 10, 635-649.	4.2	140
54	Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. Planta, 2008, 228, 255-272.	3.2	40

ANDREW G SHARPE

#	Article	IF	CITATIONS
55	Conservation of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 function between Arabidopsis thaliana and Brassica napus. Physiological and Molecular Plant Pathology, 2007, 71, 174-183.	2.5	33
56	lsolation and characterization of a GCN5-interacting protein from Arabidopsis thaliana. Planta, 2007, 225, 1367-1379.	3.2	20
57	Segmental Structure of the <i>Brassica napus</i> Genome Based on Comparative Analysis With <i>Arabidopsis thaliana</i> . Genetics, 2005, 171, 765-781.	2.9	516
58	Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genetics and Biology, 2004, 41, 735-753.	2.1	67
59	Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genetics and Biology, 2004, 41, 754-765.	2.1	93
60	Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology, 2003, 53, 383-397.	3.9	271
61	Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theoretical and Applied Genetics, 2003, 107, 1169-1173.	3.6	60
62	Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta, 2003, 217, 299-308.	3.2	70
63	Detection and Effects of a Homeologous Reciprocal Transposition in <i>Brassica napus</i> . Genetics, 2003, 165, 1569-1577.	2.9	131
64	Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology, 2002, 92, 1134-1141.	2.2	69
65	Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theoretical and Applied Genetics, 1999, 99, 1149-1154.	3.6	91
66	Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Molecular Biology, 1998, 37, 763-772.	3.9	103
67	Independent deletions of a pathogen-resistance gene in Brassica and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15843-15848.	7.1	124
68	Desaturase multigene families of Brassica napus arose through genome duplication. Theoretical and Applied Genetics, 1997, 94, 583-591.	3.6	127
69	Comparison of Flowering Time Genes in <i>Brassica rapa, B. napus</i> and <i>Arabidopsis thaliana</i> . Genetics, 1997, 146, 1123-1129.	2.9	263
70	Identification of a peptide methionine sulphoxide reductase gene in an oleosin promoter from Brassica napus. Plant Journal, 1996, 10, 235-242.	5.7	41
71	Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theoretical and Applied Genetics, 1996, 93-93, 833-839.	3.6	107
72	Molecular cloning of a cDNA fromBrassica napus L. for a homologue of acyl-CoA-binding protein. Plant Molecular Biology, 1994, 25, 917-920.	3.9	84

#	Article	IF	CITATIONS
73	Mapping the Brassica Genome. Outlook on Agriculture, 1993, 22, 85-92.	3.4	45