Andrew G Sharpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272906/publications.pdf

Version: 2024-02-01

73 papers 14,458 citations

42 h-index 79698 73 g-index

75 all docs

75 docs citations

75 times ranked

10721 citing authors

#	Article	IF	Citations
1	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	12.6	2,089
2	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	21.4	1,893
3	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	17.5	1,049
4	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	12.8	918
5	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	12.6	781
6	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	12.6	768
7	Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 2019, 51, 885-895.	21.4	576
8	Segmental Structure of the <i>Brassica napus</i> Genome Based on Comparative Analysis With <i>Arabidopsis thaliana</i> Genetics, 2005, 171, 765-781.	2.9	516
9	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
10	Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15, R77.	9.6	456
11	The genome of flax (<i>Linum usitatissimum</i>) assembled <i>de novo</i> from short shotgun sequence reads. Plant Journal, 2012, 72, 461-473.	5.7	415
12	The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 2016, 7, 13390.	12.8	375
13	Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology, 2003, 53, 383-397.	3.9	271
14	Comparison of Flowering Time Genes in <i>Brassica rapa, B. napus</i> and <i>Arabidopsis thaliana</i> Genetics, 1997, 146, 1123-1129.	2.9	263
15	A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biology, 2015, 16, 48.	8.8	216
16	A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theoretical and Applied Genetics, 2016, 129, 1887-1899.	3.6	205
17	Long-read sequence assembly: a technical evaluation in barley. Plant Cell, 2021, 33, 1888-1906.	6.6	180
18	Polyploid Evolution of the Brassicaceae during the Cenozoic Era Â. Plant Cell, 2014, 26, 2777-2791.	6.6	165

#	Article	IF	CITATIONS
19	Patterns of differential gene expression in <i>Brassica napus</i> cultivars infected with <i>Sclerotinia sclerotiorum</i> Molecular Plant Pathology, 2009, 10, 635-649.	4.2	140
20	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	21.4	138
21	Detection and Effects of a Homeologous Reciprocal Transposition in <i>Brassica napus</i> . Genetics, 2003, 165, 1569-1577.	2.9	131
22	Desaturase multigene families of Brassica napus arose through genome duplication. Theoretical and Applied Genetics, 1997, 94, 583-591.	3.6	127
23	Independent deletions of a pathogen-resistance gene in Brassica and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15843-15848.	7.1	124
24	Gene expression analysis of flax seed development. BMC Plant Biology, 2011, 11, 74.	3.6	112
25	Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theoretical and Applied Genetics, 1996, 93-93, 833-839.	3.6	107
26	Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Molecular Biology, 1998, 37, 763-772.	3.9	103
27	A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nature Plants, 2020, 6, 929-941.	9.3	94
28	Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genetics and Biology, 2004, 41, 754-765.	2.1	93
29	Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theoretical and Applied Genetics, 1999, 99, 1149-1154.	3.6	91
30	Comprehensive Transcriptome Assembly of Chickpea (Cicer arietinum L.) Using Sanger and Next Generation Sequencing Platforms: Development and Applications. PLoS ONE, 2014, 9, e86039.	2.5	87
31	Molecular cloning of a cDNA fromBrassica napus L. for a homologue of acyl-CoA-binding protein. Plant Molecular Biology, 1994, 25, 917-920.	3.9	84
32	Gene-based SNP discovery and genetic mapping in pea. Theoretical and Applied Genetics, 2014, 127, 2225-2241.	3.6	74
33	Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta, 2003, 217, 299-308.	3.2	70
34	Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology, 2002, 92, 1134-1141.	2.2	69
35	Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genetics and Biology, 2004, 41, 735-753.	2.1	67
36	Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theoretical and Applied Genetics, 2003, 107, 1169-1173.	3.6	60

3

#	Article	IF	CITATIONS
37	The developmental transcriptome atlas of the biofuel crop <i>Camelina sativa</i> . Plant Journal, 2016, 88, 879-894.	5.7	60
38	A Mutant Brassica napus (Canola) Population for the Identification of New Genetic Diversity via TILLING and Next Generation Sequencing. PLoS ONE, 2013, 8, e84303.	2.5	59
39	The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell, 2019, 31, 2888-2911.	6.6	57
40	Analysis of B-Genome Chromosome Introgression in Interspecific Hybrids of <i>Brassica napus</i> × <i>B. carinata</i> Genetics, 2011, 187, 659-673.	2.9	48
41	Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.). DNA Research, 2012, 19, 51-65.	3.4	47
42	Mapping the Brassica Genome. Outlook on Agriculture, 1993, 22, 85-92.	3.4	45
43	Identification of a peptide methionine sulphoxide reductase gene in an oleosin promoter from Brassica napus. Plant Journal, 1996, 10, 235-242.	5.7	41
44	Introgression of Brassica rapa subsp. sylvestris blackleg resistance into B. napus. Molecular Breeding, 2012, 30, 1495-1506.	2.1	41
45	Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biology, 2018, 19, 112.	8.8	41
46	Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. Planta, 2008, 228, 255-272.	3.2	40
47	Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L. PLoS ONE, 2013, 8, e81992.	2.5	40
48	Conservation of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 function between Arabidopsis thaliana and Brassica napus. Physiological and Molecular Plant Pathology, 2007, 71, 174-183.	2.5	33
49	Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat. Theoretical and Applied Genetics, 2016, 129, 1373-1382.	3 . 6	33
50	Assessing Diversity in the <i>Camelina </i> Genus Provides Insights into the Genome Structure of <i>Camelina sativa </i> Genes, Genomes, Genetics, 2020, 10, 1297-1308.	1.8	33
51	High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets. Theoretical and Applied Genetics, 2014, 127, 2051-2064.	3.6	30
52	Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. Theoretical and Applied Genetics, 2017, 130, 2617-2635.	3.6	27
53	Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins. Journal of Experimental Botany, 2012, 63, 6283-6295.	4.8	25
54	Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS ONE, 2020, 15, e0230855.	2.5	25

#	Article	IF	CITATIONS
55	Mapping Seed Phytic Acid Concentration and Iron Bioavailability in a Pea Recombinant Inbred Line Population. Crop Science, 2015, 55, 828-836.	1.8	23
56	High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS ONE, 2017, 12, e0175285.	2.5	23
57	Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. Plant Biotechnology Journal, 2021, 19, 1624-1643.	8.3	23
58	Transcriptome Profiling Identifies Candidate Genes Associated with the Accumulation of Distinct Sulfur Î ³ -Glutamyl Dipeptides in Phaseolus vulgaris and Vigna mungo Seeds. Frontiers in Plant Science, 2013, 4, 60.	3.6	21
59	Genome reâ€sequencing and simple sequence repeat markers reveal the existence of divergent lineages in the Canadian <i>Puccinia striiformis</i> f. sp. <i>tritici</i> population with extensive DNA methylation. Environmental Microbiology, 2018, 20, 1498-1515.	3.8	21
60	Isolation and characterization of a GCN5-interacting protein from Arabidopsis thaliana. Planta, 2007, 225, 1367-1379.	3.2	20
61	Development and Validation of <i>Thinopyrum elongatum</i> –Expressed Molecular Markers Specific for the Long Arm of Chromosome 7E. Crop Science, 2016, 56, 354-364.	1.8	20
62	High-density genetic mapping of a major QTL for resistance to multiple races of loose smut in a tetraploid wheat cross. PLoS ONE, 2018, 13, e0192261.	2.5	18
63	Structural features of two major nucleolar organizer regions (NORs), <i>Norâ€B1</i> and <i>Norâ€B2</i> , and chromosomeâ€specific rRNA gene expression in wheat. Plant Journal, 2018, 96, 1148-1159.	5.7	17
64	Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum). PLoS ONE, 2018, 13, e0203283.	2.5	17
65	Mapping quantitative trait loci associated with common bunt resistance in a spring wheat (Triticum) Tj ETQq $1\ 1$	0.784314 3.6	rgBT /Overlo
66	A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theoretical and Applied Genetics, 2016, 129, 1507-1517.	3.6	15
67	Deep neural networks for genomic prediction do not estimate marker effects. Plant Genome, 2021, 14, e20147.	2.8	15
68	High Density Mapping of Quantitative Trait Loci Conferring Gluten Strength in Canadian Durum Wheat. Frontiers in Plant Science, 2020, 11, 170.	3.6	14
69	Machine learning analyses of methylation profiles uncovers tissueâ€specific gene expression patterns in wheat. Plant Genome, 2020, 13, e20027.	2.8	13
70	Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae. PLoS ONE, 2014, 9, e95877.	2.5	8
71	The biochemical composition and transcriptome of cotyledons from Brassica napus lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding. BMC Plant Biology, 2018, 18, 64.	3.6	8
72	Conditional Mapping Identified Quantitative Trait Loci for Grain Protein Concentration Expressing Independently of Grain Yield in Canadian Durum Wheat. Frontiers in Plant Science, 2021, 12, 642955.	3.6	6

#	Article	IF	CITATIONS
73	Sources of genomic diversity in the self-fertile plant pathogen, Sclerotinia sclerotiorum, and consequences for resistance breeding. PLoS ONE, 2022, 17, e0262891.	2.5	3