
Julia Brasch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272518/publications.pdf Version: 2024-02-01

IIIIIA REASCH

#	Article	IF	CITATIONS
1	Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nature Methods, 2019, 16, 1153-1160.	19.0	693
2	The Extracellular Architecture of Adherens Junctions Revealed by Crystal Structures of Type I Cadherins. Structure, 2011, 19, 244-256.	3.3	347
3	Thinking outside the cell: how cadherins drive adhesion. Trends in Cell Biology, 2012, 22, 299-310.	7.9	296
4	Two-step adhesive binding by classical cadherins. Nature Structural and Molecular Biology, 2010, 17, 348-357.	8.2	184
5	Structures from Anomalous Diffraction of Native Biological Macromolecules. Science, 2012, 336, 1033-1037.	12.6	154
6	Structural basis of adhesive binding by desmocollins and desmogleins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7160-7165.	7.1	137
7	T-cadherin structures reveal a novel adhesive binding mechanism. Nature Structural and Molecular Biology, 2010, 17, 339-347.	8.2	118
8	Nectin ectodomain structures reveal a canonical adhesive interface. Nature Structural and Molecular Biology, 2012, 19, 906-915.	8.2	104
9	Visualization of clustered protocadherin neuronal self-recognition complexes. Nature, 2019, 569, 280-283.	27.8	86
10	Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11163-11168.	7.1	83
11	Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4175-84.	7.1	78
12	Structure and Binding Mechanism of Vascular Endothelial Cadherin: A Divergent Classical Cadherin. Journal of Molecular Biology, 2011, 408, 57-73.	4.2	76
13	Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior. Cell Reports, 2018, 23, 1840-1852.	6.4	54
14	Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. Journal of Biological Chemistry, 2017, 292, 11586-11598.	3.4	39
15	Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Reports, 2020, 30, 2655-2671.e7.	6.4	35
16	Crystal Structures of \hat{I}^2 -Neurexin 1 and \hat{I}^2 -Neurexin 2 Ectodomains and Dynamics of Splice Insertion Sequence 4. Structure, 2008, 16, 410-421.	3.3	33
17	Intrinsic DNA Shape Accounts for Affinity Differences between Hox-Cofactor Binding Sites. Cell Reports, 2018, 24, 2221-2230.	6.4	31
18	Crystal Structure of the Ligand Binding Domain of Netrin G2. Journal of Molecular Biology, 2011, 414, 723-734.	4.2	19

Julia Brasch

#	Article	IF	CITATIONS
19	Pathogenic IgG4 autoantibodies from endemic pemphigus foliaceus recognize a desmoglein-1 conformational epitope. Journal of Autoimmunity, 2018, 89, 171-185.	6.5	19
20	TOPAZ: A Positive-Unlabeled Convolutional Neural Network CryoEM Particle Picker that can Pick Any Size and Shape Particle. Microscopy and Microanalysis, 2019, 25, 986-987.	0.4	14
21	Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. , 2018, 10812, 245-247.		12
22	Computational model of E-cadherin clustering under force. Biophysical Journal, 2021, 120, 4944-4954.	0.5	11
23	CryoET of Single Particle CryoEM Grids Reveals Widespread Particle Adsorption to the Air-Water Interface, Which May be Reduced with New Plunging Techniques. Microscopy and Microanalysis, 2018, 24, 872-873.	0.4	0
24	Visualizing cadherin intermembrane adhesion assemblies using cryo-electron tomography. Microscopy and Microanalysis, 2021, 27, 284-287.	0.4	0