
Sake J De Vlas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Tropica, 2003, 86, 125-139.	2.0	818
2	Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models. Lancet Public Health, The, 2016, 1, e8-e17.	10.0	210
3	Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models. The Lancet Global Health, 2014, 2, e23-e34.	6.3	188
4	African Programme for Onchocerciasis Control 1995–2015: Model-Estimated Health Impact and Cost. PLoS Neglected Tropical Diseases, 2013, 7, e2032.	3.0	105
5	Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modelling analysis. Parasites and Vectors, 2015, 8, 552.	2.5	94
6	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	2.5	80
7	Epidemiologic Features and Environmental Risk Factors of Severe Fever with Thrombocytopenia Syndrome, Xinyang, China. PLoS Neglected Tropical Diseases, 2014, 8, e2820.	3.0	76
8	Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study. Tropical Medicine and International Health, 2009, 14, 52-59.	2.3	71
9	Investigating the Effectiveness of Current and Modified World Health Organization Guidelines for the Control of Soil-Transmitted Helminth Infections. Clinical Infectious Diseases, 2018, 66, S253-S259.	5.8	67
10	Global elimination of leprosy by 2020: are we on track?. Parasites and Vectors, 2015, 8, 548.	2.5	66
11	TESTING VACCINES IN HUMAN EXPERIMENTAL MALARIA: STATISTICAL ANALYSIS OF PARASITEMIA MEASURED BY A QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION. American Journal of Tropical Medicine and Hygiene, 2004, 71, 196-201.	1.4	65
12	The role of smoking in social networks on smoking cessation and relapse among adults: A longitudinal study. Preventive Medicine, 2017, 99, 105-110.	3.4	61
13	Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium. PLoS Neglected Tropical Diseases, 2020, 14, e0008033.	3.0	61
14	Elimination of African Onchocerciasis: Modeling the Impact of Increasing the Frequency of Ivermectin Mass Treatment. PLoS ONE, 2014, 9, e115886.	2.5	59
15	Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasites and Vectors, 2016, 9, 25.	2.5	55
16	How Can Onchocerciasis Elimination in Africa Be Accelerated? Modeling the Impact of Increased Ivermectin Treatment Frequency and Complementary Vector Control. Clinical Infectious Diseases, 2018, 66, S267-S274.	5.8	55
17	Feasibility of controlling hookworm infection through preventive chemotherapy: a simulation study using the individual-based WORMSIM modelling framework. Parasites and Vectors, 2015, 8, 541.	2.5	53
18	Case fatality of SARS in mainland China and associated risk factors. Tropical Medicine and	2.3	52

International Health, 2009, 14, 21-27.

#	Article	IF	CITATIONS
19	The SARS epidemic in mainland China: bringing together all epidemiological data. Tropical Medicine and International Health, 2009, 14, 4-13.	2.3	51
20	LYMFASIM, a simulation model for predicting the impact of lymphatic filariasis control: quantification for African villages. Parasitology, 2008, 135, 1583-1598.	1.5	50
21	Between-Country Inequalities in the Neglected Tropical Disease Burden in 1990 and 2010, with Projections for 2020. PLoS Neglected Tropical Diseases, 2016, 10, e0004560.	3.0	50
22	Elimination of visceral leishmaniasis in the Indian subcontinent: a comparison of predictions from three transmission models. Epidemics, 2017, 18, 67-80.	3.0	49
23	Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal. Epidemics, 2017, 18, 4-15.	3.0	48
24	Feasibility of eliminating visceral leishmaniasis from the Indian subcontinent: explorations with a set of deterministic age-structured transmission models. Parasites and Vectors, 2016, 9, 24.	2.5	47
25	African Programme for Onchocerciasis Control 1995–2015: Updated Health Impact Estimates Based on New Disability Weights. PLoS Neglected Tropical Diseases, 2014, 8, e2759.	3.0	45
26	Concerted Efforts to Control or Eliminate Neglected Tropical Diseases: How Much Health Will Be Gained?. PLoS Neglected Tropical Diseases, 2016, 10, e0004386.	3.0	45
27	Evidence for scaling up HIV treatment in sub-Saharan Africa: A call for incorporating health system constraints. PLoS Medicine, 2017, 14, e1002240.	8.4	42
28	Health Seeking Behaviour and Utilization of Health Facilities for Schistosomiasis-Related Symptoms in Ghana. PLoS Neglected Tropical Diseases, 2010, 4, e867.	3.0	41
29	Predicted short and long-term impact of deworming and water, hygiene, and sanitation on transmission of soil-transmitted helminths. PLoS Neglected Tropical Diseases, 2018, 12, e0006758.	3.0	40
30	Post-Kala-Azar Dermal Leishmaniasis as a Reservoir for Visceral Leishmaniasis Transmission. Trends in Parasitology, 2019, 35, 590-592.	3.3	40
31	The Socioeconomic Benefit to Individuals of Achieving the 2020 Targets for Five Preventive Chemotherapy Neglected Tropical Diseases. PLoS Neglected Tropical Diseases, 2017, 11, e0005289.	3.0	39
32	Modelling Anti-Ov16 IgG4 Antibody Prevalence as an Indicator for Evaluation and Decision Making in Onchocerciasis Elimination Programmes. PLoS Neglected Tropical Diseases, 2017, 11, e0005314.	3.0	37
33	Burden of onchocerciasis-associated epilepsy: first estimates and research priorities. Infectious Diseases of Poverty, 2018, 7, 101.	3.7	34
34	Policy Recommendations From Transmission Modeling for the Elimination of Visceral Leishmaniasis in the Indian Subcontinent. Clinical Infectious Diseases, 2018, 66, S301-S308.	5.8	34
35	Mapping and characterising areas with high levels of HIV transmission in sub-Saharan Africa: AÂgeospatial analysis of national survey data. PLoS Medicine, 2020, 17, e1003042.	8.4	34
36	Onchocerciasis: The Pre-control Association between Prevalence of Palpable Nodules and Skin Microfilariae. PLoS Neglected Tropical Diseases, 2013, 7, e2168.	3.0	33

#	Article	IF	CITATIONS
37	Uniting mathematics and biology for control of visceral leishmaniasis. Trends in Parasitology, 2015, 31, 251-259.	3.3	33
38	Rapid increase of scrub typhus incidence in Guangzhou, southern China, 2006―2014. BMC Infectious Diseases, 2017, 17, 13.	2.9	32
39	African Program for Onchocerciasis Control 1995–2010: Impact of Annual Ivermectin Mass Treatment on Off-Target Infectious Diseases. PLoS Neglected Tropical Diseases, 2015, 9, e0004051.	3.0	32
40	The impact of public health control measures during the SARS epidemic in mainland China. Tropical Medicine and International Health, 2009, 14, 101-104.	2.3	31
41	Comparison and validation of two mathematical models for the impact of mass drug administration on Ascaris lumbricoides and hookworm infection. Epidemics, 2017, 18, 38-47.	3.0	31
42	Socioeconomic benefit to individuals of achieving 2020 targets for four neglected tropical diseases controlled/eliminated by innovative and intensified disease management: Human African trypanosomiasis, leprosy, visceral leishmaniasis, Chagas disease. PLoS Neglected Tropical Diseases, 2018, 12, e0006250.	3.0	29
43	Modelling Lymphatic Filariasis Transmission and Control: Modelling Frameworks, Lessons Learned and Future Directions. Advances in Parasitology, 2015, 87, 249-291.	3.2	28
44	Guidance for programmatic management of latent tuberculosis infection in the European Union/European Economic Area. European Respiratory Journal, 2019, 53, 1802077.	6.7	28
45	An open-label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against <i>Plasmodium falciparum</i> malaria. Science Translational Medicine, 2020, 12, .	12.4	28
46	Are Alternative Strategies Required to Accelerate the Global Elimination of Lymphatic Filariasis? Insights From Mathematical Models. Clinical Infectious Diseases, 2018, 66, S260-S266.	5.8	27
47	Sensitive diagnostic tools and targeted drug administration strategies are needed to eliminate schistosomiasis. Lancet Infectious Diseases, The, 2020, 20, e165-e172.	9.1	27
48	Leprosy New Case Detection Trends and the Future Effect of Preventive Interventions in ParÃ _i State, Brazil: A Modelling Study. PLoS Neglected Tropical Diseases, 2016, 10, e0004507.	3.0	27
49	Mathematical Modelling ofÂLeprosy and Its Control. Advances in Parasitology, 2015, 87, 33-51.	3.2	25
50	Reducing Income Inequalities in Food Consumption. American Journal of Preventive Medicine, 2015, 49, 605-613.	3.0	25
51	Visceral leishmaniasis: Spatiotemporal heterogeneity and drivers underlying the hotspots in Muzaffarpur, Bihar, India. PLoS Neglected Tropical Diseases, 2018, 12, e0006888.	3.0	25
52	What does the COVID-19 pandemic mean for the next decade of onchocerciasis control and elimination?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 269-280.	1.8	25
53	DIAGNOSIS OF URINARY SCHISTOSOMIASIS: A NOVEL APPROACH TO COMPARE BLADDER PATHOLOGY MEASURED BY ULTRASOUND AND THREE METHODS FOR HEMATURIA DETECTION. American Journal of Tropical Medicine and Hygiene, 2004, 71, 98-106.	1.4	24
54	The Rise and Fall of HIV in High-Prevalence Countries: A Challenge for Mathematical Modeling. PLoS Computational Biology, 2014, 10, e1003459.	3.2	22

#	Article	IF	CITATIONS
55	Highly Pathogenic Avian Influenza H5N1 in Mainland China. International Journal of Environmental Research and Public Health, 2015, 12, 5026-5045.	2.6	22
56	Predictive Value of Ov16 Antibody Prevalence in Different Subpopulations for Elimination of African Onchocerciasis. American Journal of Epidemiology, 2019, 188, 1723-1732.	3.4	22
57	Achieving herd immunity against COVID-19 at the country level by the exit strategy of a phased lift of control. Scientific Reports, 2021, 11, 4445.	3.3	22
58	Structural Uncertainty in Onchocerciasis Transmission Models Influences the Estimation of Elimination Thresholds and Selection of Age Groups for Seromonitoring. Journal of Infectious Diseases, 2020, 221, S510-S518.	4.0	19
59	The Power of Malaria Vaccine Trials Using Controlled Human Malaria Infection. PLoS Computational Biology, 2017, 13, e1005255.	3.2	19
60	Quantitative evaluation of integrated schistosomiasis control: the example of passive case finding in Ghana. Tropical Medicine and International Health, 2004, 9, A16-A21.	2.3	18
61	The Role of Acquired Immunity in the Spread of Human Papillomavirus (HPV): Explorations with a Microsimulation Model. PLoS ONE, 2015, 10, e0116618.	2.5	17
62	Minimum requirements and optimal testing strategies of a diagnostic test for leprosy as a tool towards zero transmission: A modeling study. PLoS Neglected Tropical Diseases, 2018, 12, e0006529.	3.0	17
63	Modelling the impact of COVID-19-related programme interruptions on visceral leishmaniasis in India. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 229-235.	1.8	17
64	The burden of skin disease and eye disease due to onchocerciasis in countries formerly under the African Programme for Onchocerciasis Control mandate for 1990, 2020, and 2030. PLoS Neglected Tropical Diseases, 2021, 15, e0009604.	3.0	17
65	Forecasting the new case detection rate of leprosy in four states of Brazil: A comparison of modelling approaches. Epidemics, 2017, 18, 92-100.	3.0	15
66	The effect of assortative mixing on stability of low helminth transmission levels and on the impact of mass drug administration: Model explorations for onchocerciasis. PLoS Neglected Tropical Diseases, 2018, 12, e0006624.	3.0	15
67	Sampling strategies for monitoring and evaluation of morbidity targets for soil-transmitted helminths. PLoS Neglected Tropical Diseases, 2019, 13, e0007514.	3.0	15
68	Elimination or Resurgence: Modelling Lymphatic Filariasis After Reaching the 1% Microfilaremia Prevalence Threshold. Journal of Infectious Diseases, 2020, 221, S503-S509.	4.0	15
69	Delays in lymphatic filariasis elimination programmes due to COVID-19, and possible mitigation strategies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 261-268.	1.8	15
70	Evaluating the potential impact of interruptions to neglected tropical disease programmes due to COVID-19. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 201-204.	1.8	15
71	Impact of Changes in Detection Effort on Control of Visceral Leishmaniasis in the Indian Subcontinent. Journal of Infectious Diseases, 2020, 221, S546-S553.	4.0	14
72	Associations between infection intensity categories and morbidity prevalence in school-age children are much stronger for Schistosoma haematobium than for S. mansoni. PLoS Neglected Tropical Diseases, 2021, 15, e0009444.	3.0	14

#	Article	IF	CITATIONS
73	New Insights Into the Kinetics and Variability of Egg Excretion in Controlled Human Hookworm Infections. Journal of Infectious Diseases, 2019, 220, 1044-1048.	4.0	13
74	Modelling the impact of COVID-19-related control programme interruptions on progress towards the WHO 2030 target for soil-transmitted helminths. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 253-260.	1.8	13
75	Forecasting Human African Trypanosomiasis Prevalences from Population Screening Data Using Continuous Time Models. PLoS Computational Biology, 2016, 12, e1005103.	3.2	13
76	Diagnosis of urinary schistosomiasis: a novel approach to compare bladder pathology measured by ultrasound and three methods for hematuria detection. American Journal of Tropical Medicine and Hygiene, 2004, 71, 98-106.	1.4	13
77	The impact of individual and environmental interventions on income inequalities in sports participation: explorations with an agent-based model. International Journal of Behavioral Nutrition and Physical Activity, 2018, 15, 107.	4.6	12
78	The potential impact of human visceral leishmaniasis vaccines on population incidence. PLoS Neglected Tropical Diseases, 2020, 14, e0008468.	3.0	12
79	Finding undiagnosed leprosy cases. Lancet Infectious Diseases, The, 2016, 16, 1113.	9.1	11
80	Quantifying the value of surveillance data for improving model predictions of lymphatic filariasis elimination. PLoS Neglected Tropical Diseases, 2018, 12, e0006674.	3.0	11
81	A Randomized Controlled Trial to Investigate Safety and Variability of Egg Excretion After Repeated Controlled Human Hookworm Infection. Journal of Infectious Diseases, 2021, 223, 905-913.	4.0	11
82	The severe acute respiratory syndrome epidemic in mainland China dissected. Gastroenterology Insights, 2011, 3, e2.	1.2	10
83	Progress towards lymphatic filariasis elimination in Ghana from 2000-2016: Analysis of microfilaria prevalence data from 430 communities. PLoS Neglected Tropical Diseases, 2019, 13, e0007115.	3.0	10
84	Impact of Different Sampling Schemes for Decision Making in Soil-Transmitted Helminthiasis Control Programs. Journal of Infectious Diseases, 2020, 221, S531-S538.	4.0	10
85	Economy, migrant labour and sex work. Aids, 2019, 33, 123-131.	2.2	9
86	Outbreak of COVID-19 and SARS in mainland China: a comparative study based on national surveillance data. BMJ Open, 2020, 10, e043411.	1.9	9
87	Number of people requiring post-exposure prophylaxis to end leprosy: A modeling study. PLoS Neglected Tropical Diseases, 2021, 15, e0009146.	3.0	9
88	Documenting the SARS epidemic in mainland China. Tropical Medicine and International Health, 2009, 14, 1-3.	2.3	8
89	Scaling-Down Mass Ivermectin Treatment for Onchocerciasis Elimination: Modeling the Impact of the Geographical Unit for Decision Making. Clinical Infectious Diseases, 2021, 72, S165-S171.	5.8	8
90	Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model. PLoS Computational Biology, 2021, 17, e1009355.	3.2	8

#	Article	IF	CITATIONS
91	Two-stage lot quality assurance sampling framework for monitoring and evaluation of neglected tropical diseases, allowing for imperfect diagnostics and spatial heterogeneity. PLoS Neglected Tropical Diseases, 2022, 16, e0010353.	3.0	8
92	Distribution and risk factors of hand, foot, and mouth disease in Changchun, northeastern China. Science Bulletin, 2014, 59, 533-538.	1.7	7
93	The estimated impact of natural immunity on the effectiveness of human papillomavirus vaccination. Vaccine, 2015, 33, 5357-5364.	3.8	7
94	The health impact of human papillomavirus vaccination in the situation of primary human papillomavirus screening: A mathematical modeling study. PLoS ONE, 2018, 13, e0202924.	2.5	7
95	Control and Elimination of Schistosomiasis as a Public Health Problem: Thresholds Fail to Differentiate Schistosomiasis Morbidity Prevalence in Children. Open Forum Infectious Diseases, 2021, 8, ofab179.	0.9	7
96	Antibody and Antigen Prevalence as Indicators of Ongoing Transmission or Elimination of Visceral Leishmaniasis: A Modeling Study. Clinical Infectious Diseases, 2021, 72, S180-S187.	5.8	7
97	Geospatial epidemiology of leprosy in northwest Bangladesh: a 20-year retrospective observational study. Infectious Diseases of Poverty, 2021, 10, 36.	3.7	6
98	The impact of mass drug administration expansion to low onchocerciasis prevalence settings in case of connected villages. PLoS Neglected Tropical Diseases, 2021, 15, e0009011.	3.0	6
99	How does onchocerciasis-related skin and eye disease in Africa depend on cumulative exposure to infection and mass treatment?. PLoS Neglected Tropical Diseases, 2021, 15, e0009489.	3.0	6
100	Feasibility of Onchocerciasis Elimination Using a "Test-and-not-treat―Strategy in <i>Loa loa</i> Co-endemic Areas. Clinical Infectious Diseases, 2021, 72, e1047-e1055.	5.8	6
101	Determinants of recent HIV testing among male sex workers and other men who have sex with men in Shenzhen, China: a cross-sectional study. Sexual Health, 2015, 12, 565.	0.9	5
102	Standardisation of lymphatic filariasis microfilaraemia prevalence estimates based on different diagnostic methods: a systematic review and meta-analysis. Parasites and Vectors, 2020, 13, 302.	2.5	5
103	Urogenital schistosomiasis infection prevalence targets to determine elimination as a public health problem based on microhematuria prevalence in school-age children. PLoS Neglected Tropical Diseases, 2021, 15, e0009451.	3.0	5
104	Impact of Key Assumptions About the Population Biology of Soil-Transmitted Helminths on the Sustainable Control of Morbidity. Clinical Infectious Diseases, 2021, 72, S188-S194.	5.8	3
105	Incidence and geographical distribution of canine leishmaniosis in 2016—2017 in Spain and France. Veterinary Parasitology: Regional Studies and Reports, 2021, 25, 100613.	0.5	3
106	Understanding MRSA clonal competition within a UK hospital; the possible importance of density dependence. Epidemics, 2021, 37, 100511.	3.0	3
107	Deworming women of reproductive age during adolescence and pregnancy: what is the impact on morbidity from soil-transmitted helminths infection?. Parasites and Vectors, 2021, 14, 220.	2.5	2
108	Appropriateness of the current parasitological control target for hookworm morbidity: A statistical analysis of individual-level data. PLoS Neglected Tropical Diseases, 2022, 16, e0010279.	3.0	2

#	Article	IF	CITATIONS
109	Determinants of the low uptake of HIV-related intervention services by female sex workers in Shenzhen, China: an observational study (2009–2012). Sexual Health, 2015, 12, 257.	0.9	1
110	Screening for Latent Tuberculosis (TB) Infection in Low TB Incidence Countries. Clinical Infectious Diseases, 2019, 70, 716-717.	5.8	1
111	No increased HIV risk in general population near sex work sites: A nationally representative crossâ€sectional study in Zimbabwe. Tropical Medicine and International Health, 2022, 27, 696-704.	2.3	1
112	Passive case detection for canine visceral leishmaniasis control in urban Brazil: Determinants of population uptake. PLoS Neglected Tropical Diseases, 2021, 15, e0009818.	3.0	0
113	Title is missing!. , 2020, 17, e1003042.		0
114	Title is missing!. , 2020, 17, e1003042.		0
115	Title is missing!. , 2020, 17, e1003042.		0
116	Title is missing!. , 2020, 17, e1003042.		0
117	Title is missing!. , 2020, 17, e1003042.		0
118	The potential impact of human visceral leishmaniasis vaccines on population incidence. , 2020, 14, e0008468.		0
119	The potential impact of human visceral leishmaniasis vaccines on population incidence. , 2020, 14, e0008468.		0
120	The potential impact of human visceral leishmaniasis vaccines on population incidence. , 2020, 14, e0008468.		0
121	Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic. Journal of the Royal Statistical Society Series A: Statistics in Society, 0, , .	1.1	0
122	Guiding policy towards zero leprosy: Challenges for modelling & economic evaluation. Indian Journal of Medical Research, 2022, 155, 7.	1.0	0