Xiang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3271714/publications.pdf

Version: 2024-02-01

		81900	110387
160	5,152	39	64
papers	citations	h-index	g-index
166	166	166	6376
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The roles of microRNAs in epigenetic regulation. Current Opinion in Chemical Biology, 2019, 51, 11-17.	6.1	305
2	DNAzyme‣oaded Metal–Organic Frameworks (MOFs) for Selfâ€Sufficient Gene Therapy. Angewandte Chemie - International Edition, 2019, 58, 7380-7384.	13.8	291
3	Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. Immunity, 2017, 46, 393-404.	14.3	195
4	Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nature Communications, 2018, 9, 1293.	12.8	187
5	Construction of an enzyme-free concatenated DNA circuit for signal amplification and intracellular imaging. Chemical Science, 2018, 9, 5842-5849.	7.4	167
6	Epigenetic modification of nucleic acids: from basic studies to medical applications. Chemical Society Reviews, 2017, 46, 2844-2872.	38.1	155
7	G-Quadruplex: A Regulator of Gene Expression and Its Chemical Targeting. CheM, 2018, 4, 1314-1344.	11.7	144
8	MAVS activates TBK1 and IKKÎ μ through TRAFs in NEMO dependent and independent manner. PLoS Pathogens, 2017, 13, e1006720.	4.7	136
9	Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe. Chemical Science, 2019, 10, 2342-2348.	7.4	132
10	A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new antiâ€"hepatitis C target. Science Advances, 2016, 2, e1501535.	10.3	112
11	Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chemical Biology, 2016, 23, 1113-1122.	5.2	107
12	Amplified MicroRNA Detection and Intracellular Imaging Based on an Autonomous and Catalytic Assembly of DNAzyme. ACS Sensors, 2019, 4, 110-117.	7.8	88
13	Sensitive and Convenient Detection of microRNAs Based on Cascade Amplification by Catalytic DNAzymes. Chemistry - A European Journal, 2013, 19, 92-95.	3.3	82
14	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules, 2018, 51, 1598-1604.	4.8	76
15	Keth-seq for transcriptome-wide RNA structure mapping. Nature Chemical Biology, 2020, 16, 489-492.	8.0	72
16	Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS). Cell Research, 2012, 22, 717-727.	12.0	66
17	DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5'-C-rich/G-rich-3' tails. Biosensors and Bioelectronics, 2015, 68, 736-740.	10.1	66
18	An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification. ACS Nano, 2018, 12, 6777-6783.	14.6	66

#	Article	IF	CITATIONS
19	High-efficiency and integrable DNA arithmetic and logic system based on strand displacement synthesis. Nature Communications, 2019, 10, 5390.	12.8	64
20	Precise Antibody-Independent m6A Identification via 4SedTTP-Involved and FTO-Assisted Strategy at Single-Nucleotide Resolution. Journal of the American Chemical Society, 2018, 140, 5886-5889.	13.7	63
21	DNAzyme‣oaded Metal–Organic Frameworks (MOFs) for Selfâ€ S ufficient Gene Therapy. Angewandte Chemie, 2019, 131, 7458-7462.	2.0	63
22	Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Research, 2019, 47, 56-68.	14.5	61
23	<i>N</i> ⁶ -Methyladenine hinders RNA- and DNA-directed DNA synthesis: application in human rRNA methylation analysis of clinical specimens. Chemical Science, 2016, 7, 1440-1446.	7.4	55
24	Cucurbit[7]uril-Driven Host–Guest Chemistry for Reversible Intervention of 5-Formylcytosine-Targeted Biochemical Reactions. Journal of the American Chemical Society, 2017, 139, 16903-16912.	13.7	55
25	Highly Efficient Catalytic Asymmetric Sulfaâ€Michael Addition of Thiols to <i>trans</i> \$\display = \frac{1}{4},4\display = \f	4.3	54
26	Selective Detection of 5-Formyl-2′-deoxycytidine in DNA Using a Fluorogenic Hydroxylamine Reagent. Organic Letters, 2013, 15, 3266-3269.	4.6	54
27	Hydrophilic Material for the Selective Enrichment of 5-Hydroxymethylcytosine and Its Liquid Chromatography–Tandem Mass Spectrometry Detection. Analytical Chemistry, 2013, 85, 6129-6135.	6.5	54
28	Small-Molecule-Triggered and Light-Controlled Reversible Regulation of Enzymatic Activity. Journal of the American Chemical Society, 2016, 138, 955-961.	13.7	54
29	<i>N</i> 1-Methyladenosine detection with CRISPR-Cas13a/C2c2. Chemical Science, 2019, 10, 2975-2979.	7.4	54
30	Conditional control of RNA-guided nucleic acid cleavage and gene editing. Nature Communications, 2020, 11, 91.	12.8	54
31	Degradable Zinc-Phosphate-Based Hierarchical Nanosubstrates for Capture and Release of Circulating Tumor Cells. ACS Applied Materials & Diterfaces, 2016, 8, 15917-15925.	8.0	53
32	Generation and application of ssDNA aptamers against glycolipid antigen ManLAM of Mycobacterium tuberculosis for TB diagnosis. Journal of Infection, 2016, 72, 573-586.	3.3	52
33	Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Research, 2016, 9, 214-223.	10.4	51
34	Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure. ACS Nano, 2015, 9, 9922-9929.	14.6	50
35	Selective Chemical Labelling of 5â€Formylcytosine in DNA by Fluorescent Dyes. Chemistry - A European Journal, 2013, 19, 5836-5840.	3.3	46
36	A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs. Chemical Communications, 2015, 51, 6980-6983.	4.1	45

3

#	Article	IF	CITATIONS
37	A Single ssDNA Aptamer Binding to Mannose-Capped Lipoarabinomannan of Bacillus Calmette–Guérin Enhances Immunoprotective Effect against Tuberculosis. Journal of the American Chemical Society, 2016, 138, 11680-11689.	13.7	44
38	Fluorogenic labeling and single-base resolution analysis of 5-formylcytosine in DNA. Chemical Science, 2017, 8, 7443-7447.	7.4	42
39	Label-free detection of pH based on the i-motif using an aggregation-caused quenching strategy. Chemical Communications, 2015, 51, 16960-16963.	4.1	41
40	Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals. Free Radical Biology and Medicine, 2017, 104, 54-63.	2.9	40
41	Naphthalimide derivatives as multifunctional molecules for detecting 5-formylpyrimidine by both PAGE analysis and dot-blot assays. Chemical Communications, 2018, 54, 1497-1500.	4.1	37
42	Gene specific-loci quantitative and single-base resolution analysis of 5-formylcytosine by compound-mediated polymerase chain reaction. Chemical Science, 2018, 9, 3723-3728.	7.4	37
43	Photoactive G-Quadruplex Ligand Identifies Multiple G-Quadruplex-Related Proteins with Extensive Sequence Tolerance in the Cellular Environment. Journal of the American Chemical Society, 2021, 143, 1917-1923.	13.7	37
44	Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chemical Science, 2017, 8, 4505-4510.	7.4	36
45	Efficient Separation of Nucleic Acids with Different Secondary Structures by Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 5049-5059.	13.7	36
46	Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA. Accounts of Chemical Research, 2019, 52, 1016-1024.	15.6	35
47	Programmable DNA-responsive microchip for the capture and release of circulating tumor cells by nucleic acid hybridization. Nano Research, 2018, 11, 2592-2604.	10.4	34
48	Small Unnatural Amino Acid Carried Raman Tag for Molecular Imaging of Genetically Targeted Proteins. Journal of Physical Chemistry Letters, 2018, 9, 4679-4685.	4.6	34
49	Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host–guest interactions. Nucleic Acids Research, 2017, 45, gkx025.	14.5	32
50	Light-Driven Activation of RNA-Guided Nucleic Acid Cleavage. ACS Chemical Biology, 2020, 15, 1455-1463.	3.4	32
51	A mitochondria-targeted zinc(ii) phthalocyanine for photodynamic therapy. RSC Advances, 2013, 3, 12839.	3.6	31
52	Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification. Analytica Chimica Acta, 2020, 1101, 169-175.	5.4	29
53	Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chemical Science, 2021, 12, 11322-11329.	7.4	29
54	Existence of Diverse Modifications in Smallâ€RNA Species Composed of 16–28 Nucleotides. Chemistry - A European Journal, 2018, 24, 9949-9956.	3.3	28

#	Article	IF	CITATIONS
55	A highly efficient fluorescence-based switch-on detection method of 5-formyluracil in DNA. Nano Research, 2017, 10, 2449-2458.	10.4	27
56	TRADES: Targeted RNA Demethylation by SunTag System. Advanced Science, 2020, 7, 2001402.	11.2	27
57	Systematic Investigations of Different Cytosine Modifications on CpG Dinucleotide Sequences: The Effects on the B-Z Transition. Journal of the American Chemical Society, 2014, 136, 56-59.	13.7	26
58	Diagnostic applications of gastric carcinoma cell aptamers in vitro and in vivo. Talanta, 2015, 134, 30-36.	5.5	26
59	Selective detection of N6-methyladenine in DNA via metal ion-mediated replication and rolling circle amplification. Chemical Science, 2017, 8, 200-205.	7.4	26
60	G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. Jacs Au, 2021, 1, 2146-2161.	7.9	24
61	Synthesis and spectroscopic properties of fluorescent 5-benzimidazolyl-2′-deoxyuridines 5-fdU probes obtained from o-phenylenediamine derivatives. Organic and Biomolecular Chemistry, 2013, 11, 1610.	2.8	23
62	Visualization of G-quadruplexes in gel and in live cells by a near-infrared fluorescent probe. Sensors and Actuators B: Chemical, 2016, 236, 268-275.	7.8	23
63	Application of <i>N</i> -Halogeno- <i>N</i> -sodiobenzenesulfonamide Reagents to the Selective Detection of 5-Methylcytosine in DNA Sequences. Journal of the American Chemical Society, 2013, 135, 1240-1243.	13.7	22
64	Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch. Chemical Science, 2019, 10, 447-452.	7.4	22
65	Transformation of 5-Carboxylcytosine to Cytosine Through C–C Bond Cleavage in Human Cells Constitutes a Novel Pathway for DNA Demethylation. CCS Chemistry, 2021, 3, 994-1008.	7.8	21
66	Ag+ and cysteine detection by Ag+–guanine interaction based on graphene oxide and G-quadruplex DNA. Analytical Methods, 2012, 4, 1935.	2.7	20
67	Self-Assembly of Hybridized Peptide Nucleic Acid Amphiphiles. ACS Macro Letters, 2014, 3, 467-471.	4.8	20
68	Nonlinear optical dye TSQ1 as an efficiently selective fluorescent probe for G-quadruplex DNA. Organic Chemistry Frontiers, 2014, 1, 267.	4.5	20
69	Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors. Review of Scientific Instruments, 2015, 86, 073310.	1.3	20
70	A two-photon fluorescent probe for selective methylglyoxal detection and application in living cells. Analytical Methods, 2015, 7, 2386-2390.	2.7	20
71	Multifunctional Hypoxia-Involved Gene Silencing Nanoplatform for Sensitizing Photochemotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34588-34598.	8.0	20
72	A novel aggregation-induced emission fluorescent probe for nucleic acid detection and its applications in cell imaging. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1654-1656.	2.2	19

#	Article	IF	Citations
73	Selective Labeling Aldehydes in DNA. Analytical Chemistry, 2018, 90, 14616-14621.	6.5	19
74	A Review: G-Quadruplex's Applications in Biological Target Detection and Drug Delivery. Current Topics in Medicinal Chemistry, 2015, 15, 1988-2001.	2.1	19
75	Highly Selective 5-Formyluracil Labeling and Genome-wide Mapping Using (2-Benzimidazolyl)Acetonitrile Probe. IScience, 2018, 9, 423-432.	4.1	18
76	Cationic tetrapyrrolic macromolecules as new acetylcholinesterase inhibitors. Journal of Porphyrins and Phthalocyanines, 2009, 13, 893-902.	0.8	17
77	A 4â€Aminoâ€1,8â€Naphthalimide Derivative for Selective Fluorescent Detection of Palladium(II) Ions. Asian Journal of Organic Chemistry, 2012, 1, 259-263.	2.7	17
78	5â€Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angewandte Chemie - International Edition, 2018, 57, 9689-9693.	13.8	17
79	Combining the qualities of carbazole and tetraphenyl silane in a desirable main chain for thermally activated delayed fluorescence polymers. Polymer Chemistry, 2019, 10, 4201-4208.	3.9	17
80	Fluorescent turn-on probes for the detection of fluoride ions in organic solvent and in cells. Analytical Methods, 2016, 8, 245-248.	2.7	16
81	NEase-based amplification for detection of miRNA, multiple miRNAs and circRNA. Analytica Chimica Acta, 2021, 1145, 52-58.	5.4	16
82	Comparison of Two Approaches for the Attachment of a Drug to Gold Nanoparticles and Their Anticancer Activities. Molecular Pharmaceutics, 2016, 13, 3308-3317.	4.6	15
83	5-Formyluracil as a cornerstone for aluminum detection (i) in vitro (i) and (i) in vivo (i): a more natural and sustainable strategy. Chemical Communications, 2018, 54, 13107-13110.	4.1	15
84	Acrylonitrileâ€Mediated Nascent RNA Sequencing for Transcriptomeâ€Wide Profiling of Cellular RNA Dynamics. Advanced Science, 2020, 7, 1900997.	11.2	15
85	Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chemical Society Reviews, 2021, 50, 13481-13497.	38.1	15
86	Inert Pepper aptamer-mediated endogenous mRNA recognition and imaging in living cells. Nucleic Acids Research, 2022, 50, e84-e84.	14.5	15
87	N ⁶ -Hydroperoxymethyladenosine: a new intermediate of chemical oxidation of N ⁶ -methyladenosine mediated by bicarbonate-activated hydrogen peroxide. Chemical Science, 2015, 6, 3013-3017.	7.4	14
88	A rapidly photo-activatable light-up fluorescent nucleoside and its application in DNA base variation sensing. Chemical Communications, 2016, 52, 8545-8548.	4.1	14
89	Metabolic Labeling and Imaging of Cellular RNA via Bioorthogonal Cyclopropeneâ^'Tetrazine Ligation. CCS Chemistry, 2020, 2, 89-97.	7.8	14
90	Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. Journal of the American Chemical Society, 2018, 140, 15842-15849.	13.7	13

#	Article	IF	CITATIONS
91	Ligation-Based qPCR-Amplification Assay for Radiolabel-Free Detection of ATP and NAD ⁺ with High Selectivity and Sensitivity. Analytical Chemistry, 2019, 91, 1665-1670.	6.5	13
92	Single-Base Resolution Mapping Reveals Distinct 5-Formylcytidine in <i>Saccharomyces cerevisiae</i> mRNAs. ACS Chemical Biology, 2022, 17, 77-84.	3.4	13
93	STING-mediated DNA sensing in cancer immunotherapy. Science China Life Sciences, 2017, 60, 563-574.	4.9	12
94	pH-controlled DNAzymes: Rational design and their applications in DNA-machinery devices. Nano Research, 2016, 9, 3084-3092.	10.4	11
95	Highly Selective Detection of 5-Methylcytosine in Genomic DNA Based on Asymmetric PCR and Specific DNA Damaging Reagents. Analytical Chemistry, 2016, 88, 3348-3353.	6.5	11
96	The m ⁶ A methylation perturbs the Hoogsteen pairing-guided incorporation of an oxidized nucleotide. Chemical Science, 2017, 8, 6380-6388.	7.4	11
97	Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine in DNA by selective chemical labeling. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 294-297.	2.2	10
98	Simultaneous and Sensitive Detection of Multisite 5-Methylcytosine Including Non-CpG Sites at Single-5mC-Resolution. Analytical Chemistry, 2016, 88, 10547-10551.	6.5	10
99	The construction of DNAzyme-based logic gates for amplified microRNA detection and cancer recognition. Analyst, The, 2019, 144, 7278-7282.	3.5	10
100	Multiplexed microRNA Detection Using Metal–Organic Framework for Signal Output. ACS Applied Bio Materials, 2020, 3, 2604-2609.	4.6	10
101	Superacid-catalyzed Friedel–Crafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. Polymer Chemistry, 2020, 11, 3481-3487.	3.9	9
102	A longitudinal sampling study of transcriptomic and epigenetic profiles in patients with thrombocytopenia syndrome. Nature Communications, 2021, 12, 5629.	12.8	9
103	Qualitative and quantitative detection of methylation at CpG sites using the fluorescein-dGTP incorporated asymmetric PCR assay strategy. Chemical Communications, 2014, 50, 6653-6655.	4.1	8
104	A feasible strategy for self-assembly of gold nanoparticles <i>via </i> dithiol-PEG for photothermal therapy of cancers. RSC Advances, 2018, 8, 6120-6124.	3.6	8
105	Luminescence Sensing for Qualitative and Quantitative Detection of 5-Methylcytosine. Analytical Chemistry, 2018, 90, 10064-10068.	6.5	8
106	Photostable lysosomal imaging of living cell with hyperspectral stimulated Raman scattering microscopy using a probe based on bisarylbutadiyne. Chinese Chemical Letters, 2019, 30, 1393-1396.	9.0	8
107	Portfolio Targeting Strategy To Realize the Assembly and Membrane Fusion-Mediated Delivery of Gold Nanoparticles to Mitochondria for Enhanced NIR Photothermal Therapies. Bioconjugate Chemistry, 2020, 31, 2719-2725.	3.6	8
108	Base-Resolution Analysis of Deoxyuridine at the Genome Scale Based on the Artificial Incorporation Modified Nucleobase. ACS Central Science, 2021, 7, 973-979.	11.3	8

#	Article	IF	CITATIONS
109	Regulable DNA–Protein Interactions in Vitro and Vivo at Epigenetic DNA Marks. CCS Chemistry, 2020, 2, 54-63.	7.8	8
110	Graphene oxide-based fluorescent detection of DNA and enzymes using Hoechst 33258 and its use for dual-output fluorescent logic gates. Analytical Methods, 2013, 5, 3631.	2.7	7
111	Chemical Labeling of 5-lodo-2′-deoxyuridine with 4-Ethynyl-N-ethyl-1,8-naphthalimide Using Copper-Free Sonogashira Cross-Coupling in Aqueous Medium. Synthetic Communications, 2014, 44, 1007-1011.	2.1	7
112	DNA nanomachines as evolved molecular Beacons for in vitro and in vivo detection. Talanta, 2014, 120, 141-147.	5.5	7
113	Monoradically luminescent polymers by a super acid-catalyzed polymerization and deep-red electroluminescence. Science China Chemistry, 2020, 63, 1214-1220.	8.2	7
114	4â€Thiouridineâ€Enhanced Peroxidaseâ€Generated Biotinylation of RNA. ChemBioChem, 2021, 22, 212-216.	2.6	7
115	5-Formyluracil targeted biochemical reactions with proteins inhibit DNA replication, induce mutations and interference gene expression in living cells. Chinese Chemical Letters, 2021, 32, 3252-3256.	9.0	7
116	Sequencing 5-Formyluracil in Genomic DNA at Single-Base Resolution. Analytical Chemistry, 2021, 93, 15445-15451.	6.5	7
117	Enzymatic deamination of the epigenetic nucleoside <i>N6</i> expression. Nucleic Acids Research, 2021, 49, 12048-12068.	14.5	7
118	Construction of an Autocatalytic Hybridization Assembly Circuit for Amplified <i>In Vivo</i> MicroRNA Imaging. Angewandte Chemie, 2022, 134, .	2.0	7
119	A novel nucleic acid aptamer tag: a rapid fluorescence strategy using a self-constructing G-quadruplex from AGG trinucleotide repeats. Chemical Communications, 2018, 54, 11487-11490.	4.1	6
120	Small-molecule-based human genome G4 profiling reveals potential gene regulation activity. Chemical Communications, 2019, 55, 2269-2272.	4.1	6
121	Biotinylation and isolation of an RNA G-quadruplex based on its peroxidase-mimicking activity. Analyst, The, 2019, 144, 4472-4476.	3.5	6
122	Specific stabilization of DNA G-quadruplex structures with a chemically modified complementary probe. Bioorganic and Medicinal Chemistry, 2019, 27, 1962-1965.	3.0	6
123	Differences in IFN \hat{I}^2 secretion upon Rab1 inactivation in cells exposed to distinct innate immune stimuli. Cellular and Molecular Immunology, 2021, 18, 1590-1592.	10.5	6
124	Supramolecular CRISPR-OFF switches with host–guest chemistry. Nucleic Acids Research, 2022, 50, 1241-1255.	14.5	6
125	6-lodopurine as a Versatile Building Block for RNA Purine Architecture Modifications. Bioconjugate Chemistry, 2022, 33, 353-362.	3.6	6
126	Rational guide RNA engineering for small-molecule control of CRISPR/Cas9 and gene editing. Nucleic Acids Research, 2022, 50, 4769-4783.	14.5	6

#	Article	IF	Citations
127	$\langle i \rangle N \langle i \rangle \langle b \rangle 6 \langle b \rangle$ -Methyladenosine and Its Implications in Viruses. Genomics, Proteomics and Bioinformatics, 2023, 21, 695-706.	6.9	6
128	A pyridyl carboxamide molecule selectively stabilizes DNA G-quadruplex and regulates duplex–quadruplex competition. RSC Advances, 2012, 2, 894-899.	3.6	5
129	Detecting 5-methylcytosine using an enzyme-free DNA strand exchange reaction without pretreatment under physiological conditions. Chemical Communications, 2016, 52, 6833-6836.	4.1	5
130	5â€Formylcytosine and 5 arboxylcytosine Significantly Reduce the Catalytic Activity of Hhal <scp>DNA</scp> Methyltransferase. Chinese Journal of Chemistry, 2017, 35, 853-856.	4.9	5
131	Pt(IV) Prodrugs Designed to Embed in Nanotubes of a Polysaccharide for Drug Delivery. ACS Applied Bio Materials, 2021, 4, 4841-4848.	4.6	5
132	One-pot fluorescent assay for sensitive detection of APOBEC3A activity. RSC Chemical Biology, 2021, 2, 1201-1205.	4.1	5
133	Biochemical Insights into the Role of Guanosine Oxidation on RNA G-Quadruplex. CCS Chemistry, 2020, 2, 605-612.	7.8	5
134	Synthesis of covalently-linked linear donor-acceptor copolymers containing porphyrins and oligothiophenes. Chinese Journal of Chemistry, 2010, 22, 779-781.	4.9	4
135	A selective turn-on fluorescence strategy for the detection of 5-hydroxymethyl-2′-deoxycytidine. RSC Advances, 2013, 3, 12066.	3.6	4
136	Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors. European Physical Journal C, 2015, 75, 1.	3.9	4
137	Specific recognition of guanines in non-duplex regions of nucleic acids with potassium tungstate and hydrogen peroxide. Nucleic Acids Research, 2015, 43, e3-e3.	14.5	4
138	5â€Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angewandte Chemie, 2018, 130, 9837-9841.	2.0	4
139	Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC Chemical Biology, 2022, 3, 994-1007.	4.1	4
140	Some cationic porphyrins: synthesis, stabilization of G-quadruplexes, and down-regulation of <i>c-myc</i> in Hep G2 cells. Journal of Porphyrins and Phthalocyanines, 2009, 13, 865-875.	0.8	3
141	Regulation of DNA strand displacement using a G-quadruplex-mediated toehold. RSC Advances, 2014, 4, 55367-55370.	3.6	3
142	Diagnosis applications of new hepatoma carcinoma cell aptamers in vitro. Analytical Methods, 2014, 6, 8110-8114.	2.7	3
143	A sensitive and radiolabeling-free method for pseudouridine detection. Analytical Biochemistry, 2019, 581, 113350.	2.4	3
144	Efficient Selfâ€Assembled DNA Nanoparticles through Rolling Circle Amplification for siRNA Delivery in vitro. Chinese Journal of Chemistry, 2019, 37, 588-592.	4.9	3

#	Article	IF	Citations
145	Selective Chemical Labeling and Sequencing of 5-Carboxylcytosine in DNA at Single-Base Resolution. Analytical Chemistry, 2020, 92, 12710-12715.	6.5	3
146	A m $<$ sup $>$ 6 $<$ /sup $>$ A Sensing Method by Its Impact on the Stability of RNA Double Helix. Chemistry and Biodiversity, 2020, 17, e2000050.	2.1	3
147	Bisulfite-free and quantitative detection of 5-formylcytosine in DNA through qPCR. Chemical Communications, 2021, 57, 13796-13798.	4.1	3
148	Visually Intracellular Detection of Telomerase Activity Based on <scp>DNA</scp> Strand Displacement Reaction and Gold Nanoparticle Labeling. Chinese Journal of Chemistry, 2022, 40, 693-698.	4.9	3
149	Hydrogen Peroxideâ€triggered Chemical Strategy for Controlling CRISPR systems. Chemistry - an Asian Journal, 2022, 17, .	3.3	3
150	Exploring Quaternized Hydroxyethylcellulose as Potential Gene Carriers. Chinese Journal of Chemistry, 2012, 30, 2212-2218.	4.9	2
151	Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing. Molecules, 2017, 22, 1222.	3.8	1
152	Photocaged probes for spatiotemporal imaging. Sensors and Actuators B: Chemical, 2019, 288, 113-119.	7.8	1
153	N ₃ â€Kethoxalâ€Based Bioorthogonal Intracellular RNA Labeling. ChemBioChem, 2021, 22, 1559-1562.	2.6	1
154	Breathing "trap―mechanism for C60 nanocage. Wuhan University Journal of Natural Sciences, 2013, 18, 295-299.	0.4	0
155	N4 DNA recognition by STAT6: structural and functional implications. Protein and Cell, 2017, 8, 240-241.	11.0	0
156	Initial state radiation correction and its effect on data-taking scheme for ÏfB(e+eâ^'â†' ZH) measurement. International Journal of Modern Physics A, 2019, 34, 1950118.	1.5	0
157	A far-red emissive two-photon fluorescent probe for quantification of uracil in genomic DNA. Chemical Communications, 2021, 57, 2784-2787.	4.1	0
158	Chemical labelling for m6A detection: opportunities and challenges. Fundamental Research, 2022, 2, 56-58.	3.3	0
159	Regulable DNA–Protein Interactions in Vitro and Vivo at Epigenetic DNA Marks. CCS Chemistry, 0, , 54-63.	7.8	0
160	The development of an iridium(III) complex functionalized G-quadruplex probe for the stability of G-quadruplex and lifetime image in cytoplasm. Chinese Chemical Letters, 2023, 34, 107517.	9.0	0