Chuancheng Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3269871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-yield electrochemical upgrading of CO2 into CH4 using large-area protonic ceramic electrolysis cells. Applied Catalysis B: Environmental, 2022, 307, 121196.	20.2	41
2	Enhanced CO ₂ Methanation Activity of Sm _{0.25} Ce _{0.75} O _{2-δ} –Ni by Modulating the Chelating Agents-to-Metal Cation Ratio and Tuning Metal–Support Interactions. ACS Applied Materials & Interfaces, 2022, 14, 13295-13304.	8.0	14
3	Proton-conducting ceramic fuel cells: Scale up and stack integration. Journal of Power Sources, 2021, 482, 228868.	7.8	58
4	Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells. Sustainability, 2021, 13, 4736.	3.2	21
5	Selective CO2 electrohydrogenation. Nature Catalysis, 2021, 4, 264-265.	34.4	6
6	Roadmap on inorganic perovskites for energy applications. JPhys Energy, 2021, 3, 031502.	5.3	40
7	Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Communications Chemistry, 2021, 4, .	4.5	22
8	Proton-conducting oxides for energy conversion and storage. Applied Physics Reviews, 2020, 7, .	11.3	249
9	Development of kW-Scale Protonic Ceramic Fuel Cells and Systems. ECS Transactions, 2019, 91, 997-1008.	0.5	24
10	Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nature Energy, 2019, 4, 230-240.	39.5	419
11	Measurement and Characterization of a High-Temperature, Coke-Resistant Bi-functional Ni/BZY15 Water-Gas-Shift Catalyst Under Steam-Reforming Conditions. Catalysis Letters, 2018, 148, 3592-3607.	2.6	9
12	Defect Incorporation and Transport within Dense BaZr _{0.8} Y _{0.2} O _{3 â^' Î} (BZY20) Proton-Conducting Membranes. Journal of the Electrochemical Society, 2018, 165, F581-F588.	2.9	69
13	Defect Chemistry and Transport within Dense BaCe _{0.7} Zr _{0.1} Y _{0.1} Yb _{0.1} O _{3 â^' Î} (BCZYYb) Proton-Conducting Membranes. Journal of the Electrochemical Society, 2018, 165, F845-F853.	2.9	64
14	Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature, 2018, 557, 217-222.	27.8	500
15	Ce-doped La _{0.7} Sr _{0.3} Fe _{0.9} Ni _{0.1} O _{3â^î^} as symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells. Journal of Materials Chemistry A, 2017, 5, 15253-15259.	10.3	64
16	Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 ŰC. Energy and Environmental Science, 2017, 10, 176-182.	30.8	270
17	lonic transport modification in proton conducting BaCe0.6Zr0.3Y0.1O3â^î´ with transition metal oxide dopants. Solid State Ionics, 2016, 294, 37-42.	2.7	41
18	Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 2015, 349, 1321-1326.	12.6	982