
Pungkeun Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326848/publications.pdf Version: 2024-02-01

PUNCKEUN SONC

#	Article	IF	CITATIONS
1	Electrical and Structural Properties of Tin-Doped Indium Oxide Films Deposited by DC Sputtering at Room Temperature. Japanese Journal of Applied Physics, 1999, 38, 2921-2927.	1.5	115
2	Study on Crystallinity of Tin-Doped Indium Oxide Films Deposited by DC Magnetron Sputtering. Japanese Journal of Applied Physics, 1998, 37, 1870-1876.	1.5	100
3	Preparation and Crystallization of Tin-doped and Undoped Amorphous Indium Oxide Films Deposited by Sputtering. Japanese Journal of Applied Physics, 1999, 38, 5224-5226.	1.5	81
4	Study on Thermochromic VO2Films Grown on ZnO-Coated Glass Substrates for "Smart Windows― Japanese Journal of Applied Physics, 2003, 42, 6523-6531.	1.5	68
5	Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films. Thin Solid Films, 2003, 445, 207-212.	1.8	62
6	Al-Doped ZnO Films Deposited by Reactive Magnetron Sputtering in Mid-Frequency Mode with Dual Cathodes. Japanese Journal of Applied Physics, 2002, 41, 814-819.	1.5	55
7	Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications. Thin Solid Films, 2009, 517, 4061-4064.	1.8	51
8	Crystallinity of Gallium-Doped Zinc Oxide Films Deposited by DC Magnetron Sputtering Using Ar, Ne or Kr Gas. Japanese Journal of Applied Physics, 2002, 41, 6174-6179.	1.5	45
9	Impedance Control of Reactive Sputtering Process in Mid-Frequency Mode with Dual Cathodes to Deposit Al-Doped ZnO Films. Japanese Journal of Applied Physics, 2003, 42, 263-269.	1.5	44
10	Study on In–Zn–Sn–O and In–Sn–Zn–O films deposited on PET substrate by magnetron co-sputter system. Surface and Coatings Technology, 2008, 202, 5718-5723.	ing 4.8	44
11	Crystallinity and Photocatalytic Activity of TiO2Films Deposited by Reactive Sputtering Using Various Magnetic Field Strengths. Japanese Journal of Applied Physics, 2004, 43, L442-L445.	1.5	41
12	Crystal Structure and Photocatalytic Activity of TiO2Films Deposited by Reactive Sputtering Using Ne, Ar, Kr, or Xe Gases. Japanese Journal of Applied Physics, 2004, 43, L358-L361.	1.5	35
13	Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes. Current Applied Physics, 2010, 10, S488-S490.	2.4	35
14	Synthesis and mechanical properties of TiAlCxN1â^'x coatings deposited by arc ion plating. Surface and Coatings Technology, 2005, 200, 1501-1506.	4.8	31
15	Electrical and structural properties of In-doped ZnO films deposited by RF superimposed DC magnetron sputtering system. Journal of Physics and Chemistry of Solids, 2010, 71, 669-672.	4.0	28
16	Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells. Journal of Alloys and Compounds, 2020, 831, 154626.	5.5	28
17	Synthesis and characterization of NiO-doped p-type AZO films fabricated by sol–gel method. Materials Letters, 2012, 68, 283-286.	2.6	27
18	Enhanced corrosion resistance and fuel cell performance of Al1050 bipolar plate coated with TiN/Ti double layer. Energy Conversion and Management, 2013, 75, 727-733.	9.2	25

#	Article	IF	CITATIONS
19	Photoinduced Hydrophilicity of Epitaxially Grown TiO2Films by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2003, 42, L1529-L1531.	1.5	22
20	High rate deposition of tin-doped indium oxide films by reactive magnetron sputtering with unipolar pulsing and plasma emission feedback systems. Science and Technology of Advanced Materials, 2006, 7, 56-61.	6.1	22
21	Characteristics of ITO films deposited on a PET substrate under various deposition conditions. Metals and Materials International, 2008, 14, 745-751.	3.4	22
22	Properties of ITO films deposited by RF superimposed DC magnetron sputtering. Current Applied Physics, 2009, 9, S262-S265.	2.4	20
23	Effects of hydrogen plasma treatment on SnO2:F substrates forÂamorphous Si thin film solar cells. Current Applied Physics, 2013, 13, 1589-1593.	2.4	20
24	Microstructure Effect on the High-Temperature Oxidation Resistance of Ti–Si–N Coating Layers. Japanese Journal of Applied Physics, 2003, 42, 6556-6559.	1.5	18
25	Barrier Characteristics of ZrN Films Deposited by Remote Plasma-Enhanced Atomic Layer Deposition Using Tetrakis(diethylamino)zirconium Precursor. Japanese Journal of Applied Physics, 2007, 46, 4085-4088.	1.5	18
26	Properties of ITO films deposited with different conductivity ITO targets. Metals and Materials International, 2007, 13, 475-478.	3.4	18
27	Properties of Ce-doped ITO films deposited on polymer substrate by DC magnetron sputtering. Thin Solid Films, 2010, 518, 3081-3084.	1.8	18
28	Enhanced characterization of ITO films deposited on PET by RF superimposed DC magnetron sputtering. Thin Solid Films, 2010, 518, 3085-3088.	1.8	18
29	Properties of ITO (Indium Tin Oxide) Film Deposited by Ion-Beam-Assisted Sputter. Molecular Crystals and Liquid Crystals, 2012, 564, 185-190.	0.9	17
30	Effects of O2 addition on microstructure and electrical property for ITO films deposited with several kinds of ITO targets. Journal of Physics and Chemistry of Solids, 2008, 69, 1334-1337.	4.0	16
31	Characteristics of indium zinc oxide/silver/indium zinc oxide multilayer thin films prepared by magnetron sputtering as flexible transparent film heaters. Thin Solid Films, 2018, 665, 137-142.	1.8	15
32	Effect of TiO2 buffer layer thickness on properties of ITZO films deposited on flexible substrate. Surface and Coatings Technology, 2010, 205, S312-S317.	4.8	13
33	Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials. Coatings, 2018, 8, 462.	2.6	13
34	High energy and power density of self-grown CuS@Cu2O core-shell supercapattery positrode. Journal of Solid State Electrochemistry, 2019, 23, 2609-2617.	2.5	13
35	Characteristics of NiO–AZO thin films deposited by magnetron co-sputtering in an O2 atmosphere. Materials Letters, 2012, 74, 30-32.	2.6	12
36	Effect of Boron Doping on Diamond Film and Electrochemical Properties of BDD According to Thickness and Morphology. Coatings, 2020, 10, 331.	2.6	12

#	Article	IF	CITATIONS
37	GaN Films Deposited by DC Reactive Magnetron Sputtering. Japanese Journal of Applied Physics, 2004, 43, L164-L166.	1.5	10
38	Effects of Hydrogen Doping on the Electrical Properties of Zinc–Tin–Oxide Thin Films. Japanese Journal of Applied Physics, 2010, 49, 121101.	1.5	10
39	Dependence of electrical and mechanical durability on Zn content and heat treatment for co-sputtered ITZO films. Current Applied Physics, 2012, 12, S59-S63.	2.4	10
40	P/i interfacial engineering in semi-transparent silicon thin film solar cells for fabrication at a low temperature of 150â€ ⁻ °C. Current Applied Physics, 2019, 19, 1120-1126.	2.4	10
41	Effects of Sn Concentration on Ultrathin ITO Films Deposited Using DC Magnetron Sputtering. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 494-497.	0.5	10
42	Characteristics of ITO/Ag/ITO Hybrid Layers Prepared by Magnetron Sputtering for Transparent Film Heaters. Journal of the Optical Society of Korea, 2016, 20, 807-812.	0.6	10
43	Effect of Sputtering Conditions on the Mechanical Property and the Permeability of IZO Grown by DC Magnetron Sputtering for Application to Flexible OLEDs. Journal of the Korean Physical Society, 2008, 53, 396-401.	0.7	10
44	Characteristic of Ga-Doped ZnO Films Deposited by DC Magnetron Sputtering with a Sintered Ceramic ZnO:Ga Target. Journal of the Korean Physical Society, 2008, 53, 416-420.	0.7	10
45	Effect of C2H2/H2 Gas Mixture Ratio in Direct Low-Temperature Vacuum Carburization. Metals, 2018, 8, 493.	2.3	9
46	Mechanical and structural properties of high temperature a-ITO:Sm films deposited on polyimide substrate by DC magnetron sputtering. Current Applied Physics, 2011, 11, S314-S319.	2.4	8
47	Effect of cerium doping on the electrical properties of ultrathin indium tin oxide films for application in touch sensors. Thin Solid Films, 2014, 559, 92-95.	1.8	8
48	Effect of hydrogen on mechanical stability of amorphous In–Sn–O thin films for flexible electronics. Thin Solid Films, 2019, 669, 275-280.	1.8	8
49	Properties of Gallium-Doped Zinc-Oxide Films Deposited by RF or DC Magnetron Sputtering with Various GZO Targets. Journal of the Korean Physical Society, 2009, 54, 1283-1287.	0.7	8
50	Photoluminescence Characterization of Al-Doped ZnO Films Deposited by Using DC Magnetron Sputtering. Journal of the Korean Physical Society, 2009, 54, 1344-1347.	0.7	8
51	Effects of Yttrium Doping on a-IGZO Thin Films for Use as a Channel Layer in Thin-Film Transistors. Coatings, 2019, 9, 44.	2.6	7
52	Effects of Ca Doping on Nodule Formation of on ITO Target during DC Magnetron Sputtering. Journal of the Korean Physical Society, 2009, 54, 1315-1319.	0.7	7
53	Evaluation method of the light-trapping structure for a transparent thin-film silicon solar cell with low-illuminance condition. Solar Energy, 2022, 231, 1107-1114.	6.1	7
54	Characteristics of IZSO films deposited by a co-sputtering system. Metals and Materials International, 2007, 13, 399-402.	3.4	6

#	Article	IF	CITATIONS
55	Study on mechanical and electro-optical properties of ITO/CeO2 films deposited on PI substrate for flexible organic solar cells. Current Applied Physics, 2010, 10, S491-S494.	2.4	6
56	Thermoelectric Properties of Zinc-Doped Indium Tin Oxide Thin Films Prepared Using the Magnetron Co-Sputtering Method. Coatings, 2019, 9, 788.	2.6	6
57	High Crystallization of Ultra-Thin Indium Tin Oxide Films Prepared by Direct Current Magnetron Sputtering with Post-Annealing. Science of Advanced Materials, 2016, 8, 622-626.	0.7	6
58	Sn- or Hf-doped InSbO4 films deposited by RF magnetron sputtering. Thin Solid Films, 2003, 442, 184-188.	1.8	5
59	Effect of tin concentrations on properties of indium tin oxide films deposited on PET substrate under various conditions. Current Applied Physics, 2009, 9, S266-S271.	2.4	5
60	Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering. Thin Solid Films, 2014, 559, 53-57.	1.8	5
61	Thermoelectric and electrical properties of micro-quantity Sn-doped amorphous indium–zinc oxide thin films. Japanese Journal of Applied Physics, 2017, 56, 010304.	1.5	5
62	Characteristics of amorphous Yb-doped ITO films deposited on polyimide substrate by DC magnetron sputtering. Surface and Coatings Technology, 2010, 205, S318-S323.	4.8	4
63	Controlled Lattice Thermal Conductivity of Transparent Conductive Oxide Thin Film via Localized Vibration of Doping Atoms. Nanomaterials, 2021, 11, 2363.	4.1	4
64	Preparation and Characterization of Cerium-Doped ITO Films Deposited by DC Magnetron Sputtering. Journal of the Korean Physical Society, 2009, 54, 1297-1301.	0.7	4
65	Embedded Oxidized Ag–Pd–Cu Ultrathin Metal Alloy Film Prepared at Low Temperature with Excellent Electronic, Optical, and Mechanical Properties. ACS Applied Materials & Interfaces, 2022, 14, 15756-15764.	8.0	4
66	Structures and Electrical Properties of Tin Doped Indium Oxide (ITO) Films Deposited on Different Substrates by Sputtering with H2O Introduction. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 796-801.	0.2	3
67	A Study of Transparent Conductive Indium Antimony Oxide Films Deposited by RF Magnetron Sputtering. Metals and Materials International, 2008, 14, 505-509.	3.4	3
68	In-situ electrical resistance measurement for determining minimum continuous thickness of Sn films by DC magnetron sputtering. Materials Letters, 2012, 73, 62-64.	2.6	3
69	Inâ^'Znâ^'O Thin Films with Hydrogen Flow. Coatings, 2019, 9, 485.	2.6	3
70	Hydrogen-driven dramatically improved mechanical properties of amorphized ITO–Ag–ITO thin films. RSC Advances, 2021, 11, 3439-3444.	3.6	3
71	Hydrogen-driven surface amorphization of the transparent oxide semiconductor thin-films for photovoltaic applications. Applied Surface Science, 2021, 555, 149702.	6.1	3
72	Electrochemical Properties and Chemical Oxygen Demand Depending on the Thickness of Boron-Doped Diamond. Coatings, 2020, 10, 1097.	2.6	2

#	Article	IF	CITATIONS
73	Characteristics of ITO films deposited on a PET substrate under various deposition conditions. Metals and Materials International, 2008, 14, 745-751.	3.4	2
74	Characteristic of Ultrathin ITO Films with Sn Concentration Deposited by RF Superimposed DC Sputtering. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 157-161.	0.5	2
75	Electrical Properties of Ultrathin Indium Tin Oxide Films in Relation to Sputtering Voltage–Current. Science of Advanced Materials, 2016, 8, 1912-1918.	0.7	2
76	Performance of Insoluble IrO2 Anode for Sewage Sludge Cake Electrodehydration Application with Respect to Operation Conditions. Coatings, 2022, 12, 724.	2.6	2
77	Influence of Nb2O5 interlayer on permeability of oxide multilayers on flexible substrate. Current Applied Physics, 2012, 12, S85-S88.	2.4	1
78	Characteristics of micro-quantity Sn addition to amorphous indium–zinc–oxide thin films deposited by using DC magnetron sputtering. Journal of the Korean Physical Society, 2015, 67, 1056-1063.	0.7	1
79	High Temperature Durability Amorphous ITO:Yb Films Deposited by Magnetron Co-Sputtering. Journal of the Korean Institute of Surface Engineering, 2012, 45, 242-247.	0.1	1
80	Effect of a CIGS Absorption Layer on the Film Properties of Molybdenum Back Contact. Science of Advanced Materials, 2017, 9, 244-248.	0.7	1
81	The Latest ITO Technology Innovating LCD Processes. Structural Control of TCO Films Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1999, 50, 770-775.	0.2	0
82	Mechanical and Electrical Properties of Ga-Doped ZnO Films Deposited on Flexible Substrate by DC Magnetron Sputtering. Materials Science Forum, 0, 569, 185-188.	0.3	0
83	Deposition of ISZO Films on Polymer Substrate Using Two Cathodes. Materials Science Forum, 2008, 569, 181-184.	0.3	0
84	Investigation of Barrier Layer Deposited on Flexible Polymers Substrate by Facing Target Sputtering System. Molecular Crystals and Liquid Crystals, 2012, 564, 178-184.	0.9	0
85	Microstructure and Electrical Property of TiNx Films Deposited by DC Reactive Magnetron Sputtering Superimposed Electromagnetic Field System. Journal of Nanoscience and Nanotechnology, 2012, 12, 1284-1287.	0.9	0
86	Characteristics of a-IGZO/ITO Hybrid Layer Deposited by Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2012, 12, 3425-3429.	0.9	0
87	Characteristic Corrosion Resistance of Nanocrystalline TiN Films Prepared by High Density Plasma Reactive Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2013, 13, 4601-4607.	0.9	0
88	Amorphous In-Sn-Zn-O Films Deposited on Polymer and Glass Substrates Using Co-Sputtering System. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 369-374.	0.5	0
89	Investigation on Properties of Molybdenum Thin Films for CIGS Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 167-172.	0.5	0
90	Influence of the Tin Concentration in Indium Tin Oxide (ITO) Films Deposited by DC Magnetron Sputtering for Touch Panels. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 414-418.	0.5	0

#	Article	IF	CITATIONS
91	Characteristic of the CIGS Films Deposited Using Single Sintered Disc by Magnetron Sputtering System. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 368-373.	0.5	Ο
92	Characterization of Thick Films of Cadmium Telluride for Direct Conversion X-ray Detectors. Science of Advanced Materials, 2016, 8, 1799-1808.	0.7	0