David Wilman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3268118/publications.pdf

Version: 2024-02-01

87888 114465 4,038 69 38 63 citations h-index g-index papers 69 69 69 3401 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	THE KMOS (sup) 3D (sup) SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 â @ $\frac{1}{2}$ (i) 2 (i) 2 (i) 2.7. Astrophysical Journal, 2015, 799, 209.	4.5	406
2	EVIDENCE FOR WIDE-SPREAD ACTIVE GALACTIC NUCLEUS-DRIVEN OUTFLOWS IN THE MOST MASSIVE (i>z < /i> \hat{a}^{-1} 1-2 STAR-FORMING GALAXIES. Astrophysical Journal, 2014, 796, 7.	¹ / ₄ , 4.5	184
3	Measures of galaxy environment - I. What is â€~environment'?. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2670-2682.	4.4	178
4	Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature, 2017, 543, 397-401.	27.8	177
5	The Dawn of the Red: star formation histories of group galaxies over the past 5 billion years. Monthly Notices of the Royal Astronomical Society, 2011, 413, 996-1012.	4.4	131
6	MORPHOLOGICAL COMPOSITION OF <i>z</i> â^1/4 0.4 GROUPS: THE SITE OF SO FORMATION. Astrophysical Journal, 2009, 692, 298-308.	4.5	128
7	The KMOS ^{3D} Survey: Demographics and Properties of Galactic Outflows at zÂ=Â0.6–2.7*. Astrophysical Journal, 2019, 875, 21.	4.5	118
8	MUSE sneaks a peek at extreme ram-pressure stripping events – II. The physical properties of the gas tail of ESO137â^'001. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2028-2041.	4.4	112
9	THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM $z=2.7\mathrm{TO}0.6\mathrm{WITH}$ KMOS <and sup="" sup<="" td=""><td>4.5</td><td>109</td></and>	4.5	109
10	THE ANGULAR MOMENTUM DISTRIBUTION AND BARYON CONTENT OF STAR-FORMING GALAXIES AT zÂâ^¼Â1â€ Astrophysical Journal, 2016, 826, 214.	"3* 4.5	107
11	Evidence for a change in the dominant satellite galaxy quenching mechanism at <i>z</i> Â=Â1. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4364-4376.	4.4	98
12	A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < <i>z</i> < 2.6. Astrophysical Journal Letters, 2014, 789, L40.	8.3	96
13	Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at zÂâ ¹ /4Â1–2. Astrophysical Journal, 2017, 835, 153.	4.5	88
14	STATISTICAL TOOLS FOR CLASSIFYING GALAXY GROUP DYNAMICS. Astrophysical Journal, 2009, 702, 1199-1210.	4.5	87
15	Direct observational evidence for a large transient galaxy population in groups at 0.85 < z < 1. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2303-2317.	4.4	85
16	The influence of the environmental history on quenching star formation in a \hat{b} cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2938-2959.	4.4	84
17	The Evolution and Origin of Ionized Gas Velocity Dispersion from zÂâ^1/4Â2.6 to zÂâ^1/4Â0.6 with KMOS ^{3D} ^{â^—} . Astrophysical Journal, 2019, 880, 48.	4.5	84
18	KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS*. Astrophysical Journal, 2016, 831, 149.	4.5	83

#	Article	IF	CITATIONS
19	Galaxy groups at 0.3 â‰z≠0.55 - I. Group properties. Monthly Notices of the Royal Astronomical Society, 2005, 358, 71-87.	4.4	81
20	The KMOS ^{3D} Survey: Data Release and Final Survey Paper*. Astrophysical Journal, 2019, 886, 124.	4.5	79
21	The Evolution of the Tully–Fisher Relation between z â^1⁄4 2.3 and z â^1⁄4 0.9 with KMOS ^{3D} ^{â^—} . Astrophysical Journal, 2017, 842, 121.	4.5	73
22	Times, environments and channels of bulge formation in a Lambda cold dark matter cosmology. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1439-1454.	4.4	71
23	The colour of galaxies in distant groups. Monthly Notices of the Royal Astronomical Society, 2009, 398, 754-768.	4.4	64
24	Falling Outer Rotation Curves of Star-forming Galaxies at 0.6Â≲ÂzÂ≲Â2.6 Probed with KMOS ^{3D<td>P_{4.5}</td><td>64</td>}	P _{4.5}	64
25	Galaxy groups at 0.3 â‰z≠0.55 - II. Evolution tozâ^1⁄4 0. Monthly Notices of the Royal Astronomical Society, 2005, 358, 88-100.	4.4	60
26	THE ROADMAP FOR UNIFICATION IN GALAXY GROUP SELECTION. I. A SEARCH FOR EXTENDED X-RAY EMISSION IN THE CNOC2 SURVEY. Astrophysical Journal, 2009, 704, 564-575.	4.5	59
27	The Strongly Polarized Afterglow of GRB 020405. Astrophysical Journal, 2003, 583, L63-L66.	4.5	56
28	Non-linearity and environmental dependence of the star-forming galaxies main sequence. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2839-2851.	4.4	56
29	Efficient satellite quenching at $z\hat{a}^{1}/41$ from the GEEC2 spectroscopic survey of galaxy groups. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1090-1106.	4.4	51
30	Substructure in the most massive GEEC groups: field-like populations in dynamically active groups. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3594-3611.	4.4	50
31	THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE. Astrophysical Journal, 2012, 746, 160.	4.5	49
32	The hierarchical origins of observed galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2986-3004.	4.4	47
33	KMOS ^{3D} Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7Â<ÂzÂ<Â2.7 ^{â^—} . Astrophysical Journal Letters, 2017, 841, L6.	8.3	44
34	Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at $\langle i \rangle = 1.39$. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3181-3209.	4.4	41
35	The GEEC2 spectroscopic survey of Galaxy groups at 0.8Â<ÂzÂ<Â1. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2679-2694.	4.4	40
36	Unveiling the Important Role of Groups in the Evolution of Massive Galaxies: Insights from an Infrared Passive Sequence at Intermediate Redshift. Astrophysical Journal, 2008, 680, 1009-1021.	4.5	39

3

#	Article	IF	CITATIONS
37	An X-Ray Detected Group of Quiescent Early-Type Galaxies at $\langle i \rangle z \langle j \rangle = 1.6$ in the Chandra Deep Field South. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	39
38	Ultra-deep catalog of X-ray groups in the Extended <i>Chandra </i> Deep Field South. Astronomy and Astrophysics, 2015, 576, A130.	5.1	39
39	Reversal or no reversal: the evolution of the star formation rate–density relation up to zÂâ^¼Â1.6. Monthly Notices of the Royal Astronomical Society, 2014, 437, 458-474.	4.4	36
40	FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF <i>UVJ</i> SELECTED QUIESCENT GALAXIES AT 1.5 < <i>z</i> < 2 FROM KMOS. Astrophysical Journal Letters, 2015, 804, L4.	8.3	35
41	The stellar mass content of distant galaxy groups. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1169-1180.	4.4	34
42	EXPLORING THE DIVERSITY OF GROUPS AT 0.1 < <i>z</i> < 0.8 WITH X-RAY AND OPTICALLY SELECTED SAMPLES. Astrophysical Journal, 2012, 756, 139.	4.5	34
43	The KMOS ^{3D} Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths*. Astrophysical Journal, 2018, 855, 97.	4.5	32
44	THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1. Astrophysical Journal, 2012, 746, 128.	4.5	31
45	The lack of star formation gradients in galaxy groups up to z \hat{a}^4 1.6. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3089-3103.	4.4	31
46	Star formation and environmental quenching of GEEC2 group galaxies at z $\hat{a}^{1/4}$ 1. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3070-3085.	4.4	31
47	The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4Â<ÂZÂ<Â1.6*. Astrophysical Journal, 2017, 846, 120.	4.5	31
48	Evolution in the discs and bulges of group galaxies sincez0.4. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1605-1621.	4.4	24
49	Do group dynamics play a role in the evolution of member galaxies?. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1715-1726.	4.4	21
50	Stellar massâ \in "halo mass relation for the brightest central galaxies of X-ray clusters since <i>z</i> â \in ,â 1 /4â \in ,0.65. Astronomy and Astrophysics, 2019, 631, A175.	5.1	21
51	The definition of environment and its relation to the quenching of galaxies at z = 1–2 in a hierarchical Universe. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2582-2598.	4.4	20
52	The KMOS $<$ sup $>$ 3D $<$ /sup $>$ Survey: Investigating the Origin of the Elevated Electron Densities in Star-forming Galaxies at 1 2 6% 2 2 2 8% 2 3. Astrophysical Journal, 2021, 909, 78.	4.5	19
53	The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87.	4.5	19
54	What determines the fraction of elliptical galaxies in clusters?. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1324-1330.	4.4	18

#	Article	IF	Citations
55	The evolution of galaxy star formation activity in massive haloes. Astronomy and Astrophysics, 2015, 574, A105.	5.1	18
56	The evolution of [Oâ€fii] emission from cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2005, 357, 679-686.	4.4	17
57	Beyond the fibre: resolved properties of Sloan Digital Sky Survey galaxiesã~ Monthly Notices of the Royal Astronomical Society, 2012, 420, 197-215.	4.4	17
58	The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at $z\hat{A}a\%f\hat{A}1.80$ in JKCS 041*. Astrophysical Journal, 2017, 850, 203.	4.5	17
59	The KMOS Cluster Survey (KCS). II. The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.39Â<ÂzÂ<Â1.61*. Astrophysical Journal, 2018, 856, 8.	4.5	17
60	On the dependence of galaxy morphologies on galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2968-2977.	4.4	16
61	The role of massive halos in the star formation history of the Universe. Astronomy and Astrophysics, 2015, 579, A132.	5.1	16
62	The evolution of star formation activity in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2725-2745.	4.4	15
63	THE NATURE OF STAR FORMATION AT 24 μm IN THE GROUP ENVIRONMENT AT 0.3 ≲z≲ 0.55. Astrophysi Journal, 2011, 738, 56.	cal 4.5	6
64	More than just halo mass: modelling how the red galaxy fraction depends on multiscale density in an HOD framework. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2233-2252.	4.4	3
65	The other side of bulge formation in a $\hat{\mathfrak{b}}$ cold dark matter cosmology: bulgeless galaxies in the local Universe. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	2
66	Mapping Star Forming & AGN Galaxies. , 2010, , .		0
67	A Multiscale Approach to Environment. , 2010, , .		O
68	The KMOS Galaxy Clusters Project. Proceedings of the International Astronomical Union, 2014, 10, 110-115.	0.0	0
69	KMOS Clusters and VIRIAL GTO Surveys. Proceedings of the International Astronomical Union, 2014, 10, 293-294.	0.0	0