Zoi Lygerou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326761/publications.pdf

Version: 2024-02-01

72 3,652 27 57
papers citations h-index g-index

78 78 78 3897
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ribosomal DNA and the nucleolus at the heart of aging. Trends in Biochemical Sciences, 2022, 47, 328-341.	7.5	24
2	Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends in Cancer, 2022, 8, 467-481.	7.4	15
3	Small Molecule Inhibitor Targeting CDT1/Geminin Protein Complex Promotes DNA Damage and Cell Death in Cancer Cells. Frontiers in Pharmacology, 2022, 13, 860682.	3.5	3
4	Focal adhesion proteins in hepatocellular carcinoma: RSU1 a novel tumour suppressor with prognostic significance. Pathology Research and Practice, 2022, 235, 153950.	2.3	3
5	Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress. Stem Cell Reports, 2022, , .	4.8	2
6	<scp>53BP1</scp> â€mediated recruitment of <scp>RASSF1A</scp> to ribosomal <scp>DNA</scp> breaks promotes local <scp>ATM</scp> signaling. EMBO Reports, 2022, 23, .	4. 5	6
7	Integrin-Linked-Kinase Overexpression Is Implicated in Mechanisms of Genomic Instability in Human Colorectal Cancer. Digestive Diseases and Sciences, 2021, 66, 1510-1523.	2.3	6
8	<i>In silico</i> analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genomics and Bioinformatics, 2021, 3, Iqaa112.	3.2	2
9	\hat{l}^{IM} n vivo imaging of DNA-bound minichromosome maintenance complex in embryonic mouse cortex. STAR Protocols, 2021, 2, 100234.	1.2	2
10	<i>Ex vivo</i> analysis of DNA repair targeting in extreme rare cutaneous apocrine sweat gland carcinoma. Oncotarget, 2021, 12, 1100-1109.	1.8	4
11	Fineâ€ŧuning multiciliated cell differentiation at the postâ€ŧranscriptional level: contribution of <scp>miRâ€34/449</scp> family members. Biological Reviews, 2021, 96, 2321-2332.	10.4	8
12	3D Reconstitution of the Neural Stem Cell Niche: Connecting the Dots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 705470.	4.1	3
13	Chromatin and Nuclear Architecture: Shaping DNA Replication in 3D. Trends in Genetics, 2020, 36, 967-980.	6.7	14
14	A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 580889.	4.1	38
15	The Licensing Factor Cdt1 Links Cell Cycle Progression to the DNA Damage Response. Anticancer Research, 2020, 40, 2449-2456.	1.1	17
16	Integrin-linked kinase (ILK) regulates KRAS, IPP complex and Ras suppressor-1 (RSU1) promoting lung adenocarcinoma progression and poor survival. Journal of Molecular Histology, 2020, 51, 385-400.	2.2	13
17	CRL4Cdt2: Coupling Genome Stability to Ubiquitination. Trends in Cell Biology, 2020, 30, 290-302.	7.9	27
18	<i>GemC1</i> is a critical switch for neural stem cell generation in the postnatal brain. Glia, 2019, 67, 2360-2373.	4.9	23

#	Article	lF	Citations
19	Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends in Biochemical Sciences, 2019, 44, 752-764.	7.5	81
20	GemC1 governs multiciliogenesis through direct interaction and transcriptional regulation of p73. Journal of Cell Science, 2019, 132, .	2.0	27
21	Cortical Development and Brain Malformations: Insights From the Differential Regulation of Early Events of DNA Replication. Frontiers in Cell and Developmental Biology, 2019, 7, 29.	3.7	10
22	Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma, 2018, 127, 151-174.	2.2	21
23	Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biology, 2018, 19, 37.	8.8	60
24	Visualizing the dynamics of histone variants in the S-phase nucleus. Genome Biology, 2018, 19, 182.	8.8	2
25	EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Research, 2018, 46, W467-W472.	14.5	129
26	Geminin ablation <i>in vivo</i> enhances tumorigenesis through increased genomic instability. Journal of Pathology, 2018, 246, 134-140.	4.5	29
27	Expression of α-Defensins, CD20+ B-lymphocytes, and Intraepithelial CD3+ T-lymphocytes in the Intestinal Mucosa of Patients with Liver Cirrhosis: Emerging Mediators of Intestinal Barrier Function. Digestive Diseases and Sciences, 2018, 63, 2582-2592.	2.3	8
28	Direct binding of Cdt2 to PCNA is important for targeting the CRL4 ^{Cdt2} E3 ligase activity to Cdt1. Life Science Alliance, 2018, 1, e201800238.	2.8	18
29	How a radial glial cell decides to become a multiciliated ependymal cell. Glia, 2017, 65, 1032-1042.	4.9	31
30	Mismatch repair regulates Cdt1 after UV damage. Cell Cycle, 2017, 16, 1143-1144.	2.6	4
31	Geminin Participates in Differentiation Decisions of Adult Neural Stem Cells Transplanted in the Hemiparkinsonian Mouse Brain. Stem Cells and Development, 2017, 26, 1214-1222.	2.1	2
32	Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP). Methods in Molecular Biology, 2017, 1563, 243-267.	0.9	23
33	Concise Review: Geminin—A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells. Stem Cells, 2017, 35, 299-310.	3.2	17
34	GemC1 controls multiciliogenesis in the airwayÂepithelium. EMBO Reports, 2016, 17, 400-413.	4.5	81
35	Mcidas and GemC1/Lynkeas specify embryonic radial glial cells. Neurogenesis (Austin, Tex), 2016, 3, e1172747.	1.5	13
36	Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression. Data in Brief, 2016, 7, 889-893.	1.0	3

#	Article	IF	CITATIONS
37	Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Developmental Biology, 2016, 409, 392-405.	2.0	8
38	Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development (Cambridge), 2015, 142, 70-81.	2.5	28
39	CK1δ restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1α/ARNT complex formation. Cellular Signalling, 2015, 27, 1129-1140.	3.6	28
40	Mcidas and GemC1/Lynkeas are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development (Cambridge), 2015, 142, 3661-74.	2.5	91
41	Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments. Bioinformatics, 2015, 31, 355-362.	4.1	15
42	The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2278-2286.	2.5	21
43	Licensing of DNA replication, cancer, pluripotency and differentiation: An interlinked world?. Seminars in Cell and Developmental Biology, 2014, 30, 174-180.	5.0	75
44	Cell Cycle-dependent Subcellular Translocation of the Human DNA Licensing Inhibitor Geminin. Journal of Biological Chemistry, 2013, 288, 23953-23963.	3.4	12
45	Reduced Geminin levels promote cellular senescence. Mechanisms of Ageing and Development, 2013, 134, 10-23.	4.6	15
46	Multi-step Loading of Human Minichromosome Maintenance Proteins in Live Human Cells. Journal of Biological Chemistry, 2013, 288, 35852-35867.	3.4	31
47	The Geminin and Idas Coiled Coils Preferentially Form a Heterodimer That Inhibits Geminin Function in DNA Replication Licensing. Journal of Biological Chemistry, 2013, 288, 31624-31634.	3.4	22
48	DNA Replication. , 2013, , 610-614.		0
49	easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics, 2012, 28, 1800-1801.	4.1	155
50	Control over DNA replication in time and space. FEBS Letters, 2012, 586, 2803-2812.	2.8	56
51	Cdt1 Is Differentially Targeted for Degradation by Anticancer Chemotherapeutic Drugs. PLoS ONE, 2012, 7, e34621.	2.5	27
52	Dynamic recruitment of licensing factor Cdt1 to sites of DNA damage. Journal of Cell Science, 2011, 124, 422-434.	2.0	39
53	Geminin Regulates Cortical Progenitor Proliferation and Differentiation. Stem Cells, 2011, 29, 1269-1282.	3.2	43
54	Idas, a Novel Phylogenetically Conserved Geminin-related Protein, Binds to Geminin and Is Required for Cell Cycle Progression. Journal of Biological Chemistry, 2011, 286, 23234-23246.	3.4	43

#	Article	IF	CITATIONS
55	Differential Geminin Requirement for Proliferation of Thymocytes and Mature T Cells. Journal of Immunology, 2010, 184, 2432-2441.	0.8	30
56	Life without geminin. Cell Cycle, 2010, 9, 3201-3205.	2.6	17
57	Numerical analysis of FRAP experiments for DNA replication and repair. , 2008, , .		3
58	Geminin Cleavage during Apoptosis by Caspase-3 Alters Its Binding Ability to the SWI/SNF Subunit Brahma. Journal of Biological Chemistry, 2007, 282, 9346-9357.	3.4	24
59	Cdt1 Interactions in the Licensing Process: A Model for Dynamic Spatio-temporal Control of Licensing. Cell Cycle, 2007, 6, 1549-1552.	2.6	33
60	Deregulated Overexpression of hCdt1 and hCdc6 Promotes Malignant Behavior. Cancer Research, 2007, 67, 10899-10909.	0.9	191
61	Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO Journal, 2007, 26, 1303-1314.	7.8	69
62	DNA replication in the fission yeast: robustness in the face of uncertainty. Yeast, 2006, 23, 951-962.	1.7	22
63	Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO Journal, 2006, 25, 1126-1136.	7.8	350
64	Cdt1 and geminin are down-regulated upon cell cycle exit and are over-expressed in cancer-derived cell lines. FEBS Journal, 2004, 271, 3368-3378.	0.2	91
65	Proteolysis of DNA Replication Licensing Factor Cdt1 in S-phase Is Performed Independently of Geminin through Its N-terminal Region. Journal of Biological Chemistry, 2004, 279, 30807-30816.	3.4	110
66	Overexpression of the Replication Licensing Regulators hCdt1 and hCdc6 Characterizes a Subset of Non-Small-Cell Lung Carcinomas. American Journal of Pathology, 2004, 165, 1351-1365.	3.8	160
67	Control of DNA replication licensing in a cell cycle. Genes To Cells, 2002, 7, 523-534.	1.2	208
68	The Human Licensing Factor for DNA Replication Cdt1 Accumulates in G1 and Is Destabilized after Initiation of S-phase. Journal of Biological Chemistry, 2001, 276, 44905-44911.	3.4	231
69	The Cdt1 protein is required to license DNA for replication in fission yeast. Nature, 2000, 404, 625-628.	27.8	429
70	License Withheld-Geminin Blocks DNA Replication. Science, 2000, 290, 2271-2273.	12.6	41
71	A Novel Genetic Screen for snRNP Assembly Factors in Yeast Identifies a Conserved Protein, Sad1p, Also Required for Pre-mRNA Splicing. Molecular and Cellular Biology, 1999, 19, 2008-2020.	2.3	62
72	The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs. Nucleic Acids Research, 1994, 22, 5332-5340.	14.5	81