
Katrin Mani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3267459/publications.pdf Version: 2024-02-01

Κατρινι Μανί

#	Article	IF	CITATIONS
1	Production and HPLC-Based Disaccharide Analysis of Xyloside-Primed Glycosaminoglycans. Methods in Molecular Biology, 2022, 2303, 173-182.	0.9	0
2	Assays for Evaluation of Substrates for and of β-1,4-Galactosyltransferase 7. Methods in Molecular Biology, 2022, 2303, 477-486.	0.9	0
3	Isolation and Characterization of Heparan Containing Precursor Protein Degradation Products. Methods in Molecular Biology, 2022, 2303, 279-288.	0.9	0
4	Complex modulation of cytokine-induced $\hat{l}\pm$ -synuclein aggregation by glypican-1-derived heparan sulfate in neural cells. Glycobiology, 2022, 32, 333-342.	2.5	4
5	The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nature Communications, 2022, 13, .	12.8	14
6	Reversal of apolipoprotein E4-dependent or chemical-induced accumulation of APP degradation products by vitamin C-induced release of heparan sulfate from glypican-1. Glycobiology, 2021, 31, 800-811.	2.5	4
7	Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells. Glycobiology, 2020, 30, 539-549.	2.5	9
8	The cyanobacterial neurotoxin β-N-methylamino-l-alanine prevents addition of heparan sulfate to glypican-1 and increases processing of amyloid precursor protein in dividing neuronal cells. Experimental Cell Research, 2019, 379, 172-181.	2.6	6
9	Structural and Biophysical Characterization of Human EXTL3: Domain Organization, Glycosylation, and Solution Structure. Biochemistry, 2018, 57, 1166-1177.	2.5	7
10	Common traffic routes for imported spermine and endosomal glypican-1-derived heparan sulfate in fibroblasts. Experimental Cell Research, 2018, 364, 133-142.	2.6	5
11	Fine-tuning the structure of glycosaminoglycans in living cells using xylosides. Glycobiology, 2018, 28, 499-511.	2.5	9
12	LC–MS/MS characterization of xyloside-primed glycosaminoglycans with cytotoxic properties reveals structural diversity and novel glycan modifications. Journal of Biological Chemistry, 2018, 293, 10202-10219.	3.4	12
13	Nucleolin is a nuclear target of heparan sulfate derived from glypican-1. Experimental Cell Research, 2017, 354, 31-39.	2.6	16
14	Cytochrome b561, copper, Î ² -cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1. Experimental Cell Research, 2017, 360, 171-179.	2.6	9
15	Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro. Journal of Biological Chemistry, 2016, 291, 14871-14882.	3.4	28
16	Disubstituted naphthyl β-D-xylopyranosides: Synthesis, GAG priming, and histone acetyltransferase (HAT) inhibition. Glycoconjugate Journal, 2016, 33, 245-257.	2.7	3
17	Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction. Glycobiology, 2016, 26, 623-634.	2.5	6
18	Exploration of the active site of β4GalT7: modifications of the aglycon of aromatic xylosides. Organic and Biomolecular Chemistry, 2015, 13, 3351-3362.	2.8	25

Katrin Mani

#	Article	IF	CITATIONS
19	Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts. Glycobiology, 2015, 25, 548-556.	2.5	11
20	Suppression of glypican-1 autodegradation by NO-deprivation correlates with nuclear accumulation of amyloid beta in normal fibroblasts. Glycoconjugate Journal, 2015, 32, 675-684.	2.7	5
21	Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1. Journal of Biological Chemistry, 2015, 290, 22991-23008.	3.4	20
22	Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the β4GalT7 active site. Chemical Science, 2014, 5, 3501-3508.	7.4	26
23	Amyloid Precursor Protein (APP)/APP-like Protein 2 (APLP2) Expression Is Required to Initiate Endosome-Nucleus-Autophagosome Trafficking of Glypican-1-derived Heparan Sulfate. Journal of Biological Chemistry, 2014, 289, 20871-20878.	3.4	25
24	Non-toxic amyloid beta formed in the presence of glypican-1 or its deaminatively generated heparan sulfate degradation products. Glycobiology, 2013, 23, 1510-1519.	2.5	14
25	Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage. Glycobiology, 2012, 22, 1480-1486.	2.5	18
26	Crystal Structure of N-Glycosylated Human Glypican-1 Core Protein. Journal of Biological Chemistry, 2012, 287, 14040-14051.	3.4	54
27	Suppression of Amyloid β A11 Antibody Immunoreactivity by Vitamin C. Journal of Biological Chemistry, 2011, 286, 27559-27572.	3.4	34
28	Synthesis, conformation and biology of naphthoxylosides. Bioorganic and Medicinal Chemistry, 2011, 19, 4114-4126.	3.0	29
29	Attenuation of Tumor Growth by Formation of Antiproliferative Glycosaminoglycans Correlates with Low Acetylation of Histone H3. Cancer Research, 2010, 70, 3771-3779.	0.9	35
30	S-Nitrosylation of secreted recombinant human glypican-1. Glycoconjugate Journal, 2009, 26, 1247-1257.	2.7	11
31	Chemical and Thermal Unfolding of Glypican-1: Protective Effect of Heparan Sulfate against Heat-Induced Irreversible Aggregation. Biochemistry, 2009, 48, 9994-10004.	2.5	25
32	Involvement of glypicanâ€1 autoprocessing in scrapie infection. European Journal of Neuroscience, 2008, 28, 964-972.	2.6	15
33	Heparan Sulfate Degradation Products Can Associate with Oxidized Proteins and Proteasomes. Journal of Biological Chemistry, 2007, 282, 21934-21944.	3.4	20
34	Novel aspects of vitamin C: how important is glypican-1 recycling?. Trends in Molecular Medicine, 2007, 13, 143-149.	6.7	24
35	Copper-dependent co-internalization of the prion protein and glypican-1. Journal of Neurochemistry, 2006, 98, 1445-1457.	3.9	32
36	Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann–Pick C1 fibroblasts. Glycobiology, 2006, 16, 711-718.	2.5	19

Katrin Mani

#	Article	IF	CITATIONS
37	Constitutive and vitamin C-induced, NO-catalyzed release of heparan sulfate from recycling glypican-1 in late endosomes. Glycobiology, 2006, 16, 1251-1261.	2.5	22
38	The Amyloid Precursor Protein (APP) of Alzheimer Disease and Its Paralog, APLP2, Modulate the Cu/Zn-Nitric Oxide-catalyzed Degradation of Glypican-1 Heparan Sulfate in Vivo. Journal of Biological Chemistry, 2005, 280, 13913-13920.	3.4	45
39	Tumor attenuation by 2(6-hydroxynaphthyl)-Â-D-xylopyranoside requires priming of heparan sulfate and nuclear targeting of the products. Glycobiology, 2004, 14, 387-397.	2.5	55
40	The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1. Glycobiology, 2004, 14, 599-607.	2.5	25
41	Involvement of Glycosylphosphatidylinositol-linked Ceruloplasmin in the Copper/Zinc-Nitric Oxide-dependent Degradation of Glypican-1 Heparan Sulfate in Rat C6 Glioma Cells. Journal of Biological Chemistry, 2004, 279, 12918-12923.	3.4	28
42	Prion, Amyloid β-derived Cu(II) Ions, or Free Zn(II) Ions Support S-Nitroso-dependent Autocleavage of Glypican-1 Heparan Sulfate. Journal of Biological Chemistry, 2003, 278, 38956-38965.	3.4	36
43	Glypican-1 Is a Vehicle for Polyamine Uptake in Mammalian Cells. Journal of Biological Chemistry, 2003, 278, 47181-47189.	3.4	143
44	Copper-dependent Autocleavage of Glypican-1 Heparan Sulfate by Nitric Oxide Derived from Intrinsic Nitrosothiols. Journal of Biological Chemistry, 2002, 277, 33353-33360.	3.4	39
45	Nitric Oxide-dependent Processing of Heparan Sulfate in Recycling S-Nitrosylated Glypican-1 Takes Place in Caveolin-1-containing Endosomes. Journal of Biological Chemistry, 2002, 277, 44431-44439.	3.4	72
46	N-Unsubstituted Glucosamine in Heparan Sulfate of Recycling Glypican-1 from Suramin-treated and Nitrite-deprived Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 3885-3894.	3.4	25
47	Modulations of Glypican-1 Heparan Sulfate Structure by Inhibition of Endogenous Polyamine Synthesis. Journal of Biological Chemistry, 2001, 276, 46779-46791.	3.4	48
48	A novel role for nitric oxide in the endogenous degradation of heparan sulfate during recycling of glypican-1 in vascular endothelial cells. Glycobiology, 2000, 10, 577-586.	2.5	43
		04014 DT	

49 Degradation and Reprocessing of Heparan Sulphate in Recycling Glypican (Heparan Sulphate) Tj ETQq1 1 0.784314 rgBT /Overlock 10